Skip to main content
Log in

Influence of h-BN Concentration on the Development of PVDF-HFP/TiO2/h-BN Nanocomposite Films for Electroadhesive Applications

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Because of their enormous potential for use in current electronic systems, polymer-based dielectric materials have garnered considerable attention. The spatial distribution of fillers has a significant impact on the dielectric behavior of polymer composites, so a better understanding of the relationship between the dielectric properties of composites and the spatial distribution of filler would be extremely helpful in developing new high-performance dielectrics. In this study, anatase TiO2 and hexagonal boron nitride (h-BN) nanocomposites were prepared by ball-milling. This was followed by the preparation of poly(vinylidene fluoride)–co-hexafluoropropylene (PVDF-HFP)-based polymer nanocomposites. TiO2/h-BN material was confirmed by x-ray diffraction (XRD) analysis. The TiO2/h-BN nanoparticles were well distributed in scanning electron microscopy (SEM) images, with very little particle aggregation. The Fourier transform infrared (FTIR) spectroscopy data indicate that the nanocomposite components interact well. AC impedance spectroscopy was used to investigate the variations in electrical characteristics including dielectric constant, dielectric loss and electrical resistivity (Nyquist plot) of the prepared composite film. These films were applied to enhance load-bearing capacity during electrostatic force state, making use of flexible fabric-based metal electrodes. The load-bearing capacity of the film was determined by measuring the tensile strength. The PVDF-HFP/TiO2/h-BN nanocomposite showed flexibility in addition to dependable dielectric capabilities, making it potentially suitable for a variety of flexible electronic devices such as electroadhesion and electrostatic storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data will be available upon request from the authors.

References

  1. C. Wang, J. Zhang, S. Gong, and K. Ren, Significantly enhanced breakdown field for core-shell structured poly (vinylidene fluoride-hexafluoropropylene)/TiO2 nanocomposites for ultra-high energy density capacitor applications. J. Appl. Phys. 124, 154103 (2018).

    Article  Google Scholar 

  2. S. Liu, S. Xue, W. Zhang, J. Zhai, and G. Chen, Significantly enhanced dielectric property in PVDF nanocomposites flexible films through a small loading of surface-hydroxylated Ba0.6Sr0.4 TiO3 nanotubes. J Mater Chem A 2(42), 18040–18046 (2014).

    Article  CAS  Google Scholar 

  3. E. Huang, J. Zhao, J. Zha, L. Zhang, R. Liao, and Z. Dang, Preparation and wide-frequency dielectric properties of (Ba0.5Sr0.4Ca0.1) TiO3/poly (vinylidene fluoride) composites. J. Appl. Phys. 115, 194102 (2014).

    Article  Google Scholar 

  4. A. Facchetti, M.H. Yoon, and T.J. Marks, Gate dielectrics for organic field-effect transistors: new opportunities for organic electronics. Adv. Mater. 17, 1705 (2005).

    Article  CAS  Google Scholar 

  5. Q. Zhang, H. Li, M. Poh, F. Xia, Z. Cheng, and H. Xu, An all-organic composite actuator material with a high dielectric constant. Nature 419, 284 (2002).

    Article  CAS  Google Scholar 

  6. Y. Bai, Z. Cheng, V. Bharti, H. Xu, and Q. Zhang, High-dielectric-constant ceramic-powder polymer composites. Appl. Phys. Lett. 76, 3804 (2000).

    Article  CAS  Google Scholar 

  7. A. Burke, R&D considerations for the performance and application of electrochemical capacitors. Electrochim. Acta 53, 1083 (2007).

    Article  CAS  Google Scholar 

  8. M. Crippa, A. Bianchi, D. Cristofori, M. D’Arienzo, F. Merletti, F. Morazzoni, R. Scottia, and R. Simonutti, High dielectric constant rutile–polystyrene compositewith enhanced percolative threshold. J. Mater. Chem. C 1, 484 (2013).

    Article  CAS  Google Scholar 

  9. B. Balasubramanian, K.L. Kraemer, N.A. Reding, R. Skomski, S. Ducharme, and D.J. Sellmyer, Synthesis of monodisperse TiO2−paraffin core−shell nanoparticles for improved dielectric properties. ACS Nano 4(4), 1893–1900 (2010).

    Article  CAS  Google Scholar 

  10. B. Chu, M. Lin, B. Neese, and Q. Zhang, Interfaces in poly(vinylidene fluoride) terpolymer/ZrO2 nanocomposites and their effect on dielectric properties. J. Appl. Phys. 105, 14103 (2009).

    Article  Google Scholar 

  11. J. Xu and C. Wong, Characterization and properties of an organic–inorganic dielectric nanocomposite for embedded decoupling capacitor applications. Compos Part A 38, 13 (2006).

    Article  Google Scholar 

  12. Y. Lin, C. Bunker, K. Fernando, and J. Connell, Aqueously dispersed silver nanoparticle-decorated boron nitride Nanosheets for reusable, thermal oxidation-resistant surface enhanced Raman spectroscopy (SERS) devices. ACS Appl. Mater. Interfaces 4, 1110–1117 (2012).

    Article  CAS  Google Scholar 

  13. G. Doll, J. Speck, G. Dresselhaus, M. Dresselhaus, K. Nakamura, and S. Tanuma, Intercalation of hexagonal boron nitride with potassium. J. Appl. Phys. 66, 2554–2558 (1989).

    Article  CAS  Google Scholar 

  14. K. Zhang, Y. Feng, F. Wang, Z. Yang, and J. Wang, Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications. J Mater Chem C 5(46), 11992–12022 (2017).

    Article  CAS  Google Scholar 

  15. H. Jiang and J. Lin, Hexagonal boron nitride for deep ultraviolet photonic devices. Semicond. Sci. Technol. 29, 084003 (2014).

    Article  CAS  Google Scholar 

  16. F. Hui, C. Pan, Y. Shi, Y. Ji, E. Grustan-Gutierrez, and M. Lanza, On the use of two dimensional hexagonal boron nitride as dielectric. Microelectron. Eng. 163, 119–133 (2016).

    Article  CAS  Google Scholar 

  17. G. Constantinescu and N. Hine, Multipurpose black-Phosphorus/hBNHeterostructures. NanoLett. 16, 2586–2594 (2016).

    Article  CAS  Google Scholar 

  18. J. Bao, M. Edwards, S. Huang, Y. Zhang, Y. Fu, X. Lu, Z. Yuan, K. Jeppson, and J. Liu, Thermal conduction across a boron nitride and SiO2 interface. J. Phys. D Appl. Phys. 49, 265501 (2016).

    Article  Google Scholar 

  19. K. Oh, D. Lee, M. Choo, K. Park, S. Jeon, S. Hong, J. Park, and J. Choi, Enhanced durability of polymer electrolyte membrane fuel cells by functionalized 2D boron nitride Nanoflakes. ACS Appl. Mater. Interfaces 6, 7751–7758 (2014).

    Article  CAS  Google Scholar 

  20. D. Chimene, D. Alge, and A. Gaharwar, Two-dimensional nanomaterials for biomedical applications: emerging trends and future prospects. Adv. Mater. 27, 7261–7284 (2015).

    Article  CAS  Google Scholar 

  21. Z. Huanga and W. Zhao, Coupling hybrid of HBN nanosheets and TiO2 to enhance the mechanicaland tribological properties of composite coatings. Prog. Org. Coat. 148, 105881 (2020).

    Article  Google Scholar 

  22. D. Ponnamma and M. Al-Maadeed, Influence of BaTiO3/white graphene filler synergy on the energy harvestingperformance of piezoelectric polymer nanocomposite. Sustain Energy Fuels 3, 774–785 (2019).

    Article  CAS  Google Scholar 

  23. G. Rana, C. Johri, and K. Asokan, Correlation between structural and dielectric properties of Ni-substituted magnetite Nanoparticles. Europhys. Lett. 103, 17008 (2013).

    Article  Google Scholar 

  24. S. Khalate, R. Kate, H. Pathan, and R. Deokate, Structural and electrochemical properties of spray depositedmolybdenum trioxide (α-MoO3) thin films. J. Solid State Electrochem. 21, 2737–2746 (2017).

    Article  CAS  Google Scholar 

  25. Z.M. Dang, M.S. Zheng, and J.W. Zha, 1D/2D carbon nanomaterial-polymer dielectric composites with high permittivity for power energy storage applications. Small 12(13), 1688–1701 (2016).

    Article  CAS  Google Scholar 

  26. J. Guo, C. Xiang, and J. Rossiter, A soft and shape-adaptive electroadhesive composite gripper withproprioceptive and exteroceptive capabilities. Mater. Des. 156, 586–587 (2018).

    Article  Google Scholar 

  27. J.D. Rosario, R. Ranjithkumar, B. Vidhya, R. Swaminathan, S. Ayyasamy, and R. Nandhakumar, Influence of particle size reduction in ball milled rutile TiO2 on the properties of PVDF-HFP/TiO2 nanocomposite films as dielectric layers for electro adhesive load bearing applications. J. Mater. Sci. Mater. Electron. 33(34), 25976–25990 (2022).

    Article  CAS  Google Scholar 

  28. J. Deepak Rosario, R. Ranjithkumar, B. Vidhya, R. Swaminathan, A. Sakunthala, and R. Nandhakumar, Influence of GO concentration in development of PVDF-HFP/TiO2/Graphene Oxide nanocomposite films for electroadhesive applications. J. Electron. Mater. 52, 2062–2070 (2023).

    Article  CAS  Google Scholar 

  29. J.D. Rosario, R. Ranjithkumar, V. Deepthi, B. Vidhya, R. Swaminathan, S. Ayyasamy, and R. Nandhakumar, Synergistic effect of impure/pure graphene oxide and TiO2 fillers on the dielectric properties of poly (vinylidene fluoride-hexafluoropropylene) for electroadhesive high load bearing applications. J Electroceramics 50(1), 23–36 (2023).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JDR: Analysis, Interpretation and drafting, RR analysis, Interpretation of data. BV: Conception or design of the work and revision for important intellectual content. RR, RS, SA, RN, JS: All aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to B. Vidhya.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepak Rosario, J., Ranjithkumar, R., Vidhya, B. et al. Influence of h-BN Concentration on the Development of PVDF-HFP/TiO2/h-BN Nanocomposite Films for Electroadhesive Applications. J. Electron. Mater. 53, 1058–1066 (2024). https://doi.org/10.1007/s11664-023-10861-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10861-5

Keywords

Navigation