Skip to main content
Log in

A novel all-organic DIPAB/PVDF composite film with high dielectric permittivity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A novel all-organic composite comprising polyvinylidene fluoride (PVDF) and diisopropylammonium bromide (DIPAB) crystal particles (0–20 mass%) with significant dielectric properties has been synthesized via coating method. The DIPAB crystal nano-particles were prepared in the PVDF matrix by in situ growth method, which were found effective in transforming structure and enhancing the dielectric properties of the composites. X-ray diffraction pattern and Fourier transform infrared spectroscopy confirmed that the DIPAB in situ particles can improve the content of the electroactive β phase nucleation in PVDF matrix, whereas the PVDF matrix could induce the (00l) preferred orientation of the DIPAB nano-crystal. And the dielectric performance of the DIPAB/PVDF composite was significant influenced by the enhanced electroactive β phase and (00l) textured DIPAB. Relative dielectric constants as high as 94 was obtained at 40 Hz with 5 mass% DIPAB filler, which is 11-fold higher than that of the pure PVDF matrix (~8.5). The breakdown strength decreased as the mass fraction of DIPAB increased but still stayed more than 38.9 kV/mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. Bhadra, SC. Sarkar, BK. Chaudhuri, RSC Adv. 5, 36924–36932 (2015)

    Article  Google Scholar 

  2. Z. Li, X. Zhang, G. Li, Phys. Chem. Chem. Phys. 16, 5475–5479 (2014)

    Article  Google Scholar 

  3. M. Feng, X. Huang, Z. Pu, X. Liu, J. Mater. Sci. 25, 1393–1399 (2014)

    Google Scholar 

  4. S. Liu, S. Xue, W. Zhang, J. Zhai, G. Chen, J. Mater. Chem. A 42, 18040–18046 (2014)

    Article  Google Scholar 

  5. P. Khanchaitit, K. Han, M.R. Gadinski, Q. Li, Q. Wang, Nat. Commun. 4, 1–7 (2013)

    Article  Google Scholar 

  6. Y. Song, Y. Shen, H. Liu, Y. Lin, M. Li, C.W. Nan, J. Mater. Chem. 32, 16491–16498 (2012)

    Article  Google Scholar 

  7. B.J. Madhu, M. Gurusiddesh, T. Kiran, B. Shruthi, H.S. Jayanna, J. Mater. Sci. 27, 7760–7766 (2016)

    Google Scholar 

  8. Z.M. Dang, J.K. Yuan, S.H. Yao, R.J. Liao, Adv. Mater. 44, 6334–6365 (2013)

    Article  Google Scholar 

  9. W. Wu, X. Huang, S. Li, P. Jiang, T. Toshikatsu, J. Phys. Chem. C 47, 24887–24895 (2012)

    Article  Google Scholar 

  10. X. Zhang, Y. Ma, C. Zhao, W. Yang, Appl. Surf. Sci. 305, 531–538 (2014)

    Article  Google Scholar 

  11. W. Zhu, W. Ren, H. Xin, P. Shi, X. Wu, J. Adv. Dielectr. 2, 1350011 (2013)

    Article  Google Scholar 

  12. P. Bharathi, K.B.R. Varma, J. Appl. Phys. 16, 164107 (2014)

    Article  Google Scholar 

  13. J. Lin, G. Chen, W. Yang, Z. Jiang, H. Li, L. Wang, Q. Lei, Appl. Phys. A 122, 1–9 (2016)

    Google Scholar 

  14. S. Cho, J.S. Lee, J. Jang, ACS Appl. Mater. Interfaces 18, 9668–9681 (2015)

    Article  Google Scholar 

  15. Z. Ahmad, A. Prasad, K. Prasad, Phys. B 404, 3637–3644 (2009)

    Article  Google Scholar 

  16. B. Luo, X. Wang, Y. Wang, L. Li, J. Mater. Chem. A 2, 510–519 (2014)

    Article  Google Scholar 

  17. T. Chen, Y. Zhao, L. Pan, M. Lin, J. Mater. Sci. 26, 10164–10171 (2015)

    Google Scholar 

  18. Z.M. Dang, B. Peng, D. Xie, S.H. Yao, M.J. Jiang, J. Bai, Appl. Phys. Lett. 11, 112910 (2008)

    Article  Google Scholar 

  19. Z.M. Dang, Y.H. Lin, C.W. Nan, Adv. Mater. 15, 1625–1629 (2003)

    Article  Google Scholar 

  20. L. Wang, Z.M. Dang, Appl. Phys. Lett. 4, 042903 (2005)

    Article  Google Scholar 

  21. Q.M. Zhang, H. Li, M. Poh, F. Xia, Z.Y. Cheng, H. Xu, C. Huang, Nature 419, 284–287 (2002)

    Article  Google Scholar 

  22. J. Wang, Y.E. Wang, S. Li, J. Xiao, J. Polym. Sci. 4, 490–495 (2010)

    Article  Google Scholar 

  23. K. Shehzad, A. Ul-Haq, S. Ahmad, M. Mumtaz, T. Hussain, A. Mujahid, F. Nawaz, J. Mater. Sci. 10, 3737–3744 (2013)

    Article  Google Scholar 

  24. D.W. Fu, H.L. Cai, Y. Liu, Q. Ye, W. Zhang, Y. Zhang, R.G. Xiong, Science 6118, 425–428 (2013)

    Article  Google Scholar 

  25. D. Mandal, K. Henkel, D. Schmeißer, Mater. Lett. 73, 123–125 (2012)

    Article  Google Scholar 

  26. P. Thakur, A. Kool, B. Bagchi, S. Das, P. Nandy, Phys. Chem. Chem. Phys. 17, 1368–1378 (2015)

    Article  Google Scholar 

  27. P. Thakur, A. Kool, B. Bagchi, N.A. Hoque, S. Das, P. Nandy, Phys. Chem. Chem. Phys. 17, 13082–13091 (2015)

    Article  Google Scholar 

  28. G. Chen, X. Wang, J. Lin, W. Yang, H. Li, Y. Wen, J. Mater. Chem. C 4, 8070–8076 (2016)

    Article  Google Scholar 

  29. C. Thirmal, P.P. Biswas, Y.J. Shin, T.W. Noh, N.V. Giridharan, A. Venimadhav, P. Murugavel, J. Appl. Phys. 120, 124107 (2016)

    Article  Google Scholar 

  30. P. Thakur, A. Kool, B. Bagchi, S. Das, P. Nandy, Appl. Clay Sci. 99, 149–159 (2014)

    Article  Google Scholar 

  31. P. Thakur, A. Kool, B. Bagchi, N.A. Hoque, S. Das, P. Nandy, RSC Adv. 5, 62819–62827 (2015)

    Article  Google Scholar 

  32. L. Flandin, L. Vouyovitch, A. Beroual, J.L. Bessède, N.D. Alberola, J. Phys. D 38, 144 (2004)

    Article  Google Scholar 

  33. J. Pu, Y. Yomogida, K.K. Liu, L.J. Li, Y. Iwasa, T. Takenobu, Nano Lett. 8, 4013–4017 (2012)

    Article  Google Scholar 

  34. C. Lopes, C.M. Costa, R.S. i Serra, I.C. Neves, J.G. Ribelles, S. Lanceros-Méndez, Solid State Ion. 235, 42–50 (2013)

    Article  Google Scholar 

  35. P. Lunkenheimer, V. Bobnar, A.V. Pronin, A.I. Ritus, A.A. Volkov, A. Loidl, Phys. Rev. B 5, 052105 (2002)

    Article  Google Scholar 

  36. R.G. Lorenzini, W.M. Kline, C.C. Wang, R. Ramprasad, G.A. Sotzing, Polymer 54, 3529–3533 (2014)

    Article  Google Scholar 

  37. Y. Li, X. Huang, Z. Hu, P. Jiang, S. Lia, T. Tanaka, ACS Appl. Mater. Interfaces 11, 4396–4403 (2011)

    Article  Google Scholar 

  38. W. Weibull, J. Appl. Mech. 18, 293–297 (1951)

    Google Scholar 

Download references

Acknowledgements

Authors are highly thankful to the National Natural Science Foundation of China (Grant Nos. 11444004 and 61372013), the National Natural Science Foundation of Heilongjiang Province (Grant No. E201258), the Program of Harbin Innovative Scientist (Grant No. 2013RFXXJ068) for project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenlong Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Li, H., Lin, J. et al. A novel all-organic DIPAB/PVDF composite film with high dielectric permittivity. J Mater Sci: Mater Electron 28, 9658–9666 (2017). https://doi.org/10.1007/s10854-017-6716-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6716-x

Keywords

Navigation