Skip to main content
Log in

Microscopic and dielectric studies of ZnO nanoparticles loaded in ortho-chloropolyaniline nanocomposites

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We have studied the preparation of zinc oxide nanoparticles loaded in various weight percentages in ortho-chloropolyaniline by in situ polymerization method. The length of the O-chloropolyaniline tube is found to be 200 nm and diameter is about 150 nm wherein the embedded ZnO nanoparticles is of 13 nm as confirmed from scanning electron microscopy as well as transmission electron microscopy characterizations. The presence of the vibration band of the metal oxide and other characteristic bands confirms that the polymer nanocomposites are characterized by their Fourier transmission infrared spectroscopy. The X-ray diffraction pattern of nanocomposites reveals their polycrystalline nature. Electrical property of nanocomposites is a function of the filler as well as the matrix. Cole–Cole plots reveal the presence of well-defined semicircular arcs at high frequencies which are attributed to the bulk resistance of the material. Among all nanocomposites, 30 wt% shows the low relaxation time of 151 s, and hence it has high conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Baskoutas S, Bester G (2011) Transition in the optical emission polarization of ZnO nanorods. J Phys Chem C 115:15862–15867

    Article  CAS  Google Scholar 

  • Bekri-Abbes I, Srasra E (2010) Characterization and AC conductivity of polyaniline–montmorillonite nanocomposites synthesized by mechanical/chemical reaction. React Funct Polym 70:11–18

    Article  CAS  Google Scholar 

  • Blaszkiewicz M, McLachian DS, Newnham R (1992) The volume fraction and temperature dependence of the resistivity in carbon black and graphite polymer composites: an effective media-percolation approach. J Polym Eng Sci 32:421–425

    Article  CAS  Google Scholar 

  • Bouropoulos N, Psarras GC, Moustakas N, Chrissanthopoulos A, Baskoutas S (2008) Optical and dielectric properties of ZnO–PVA nanocomposites. Phys Status Solidif A 205:2033–2037

    Article  CAS  Google Scholar 

  • Chrissanthopoulos A, Baskoutas S, Bouropoulos N, Dracopoulos V, Tasis D, Yannopoulos SN (2007) Novel ZnO nanostructures grown on carbon nanotubes by thermal evaporation. Thin Solid Films 515:8524–8528

    Article  CAS  Google Scholar 

  • Chrissanthopoulos A, Baskoutas S, Bouropoulos N, Dracopoulos V, Poulopoulos P, Yannopoulos SN (2011) Synthesis and characterization of ZnO/NiO p–n heterojunctions: ZnO nanorods grown on NiO thin film by thermal evaporation. Photonics Nanostruct Fundam Appl 9:132–139

    Article  Google Scholar 

  • Cui Y, Wei QQ, Park HK, Liberia CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:1289–1292

    Article  CAS  Google Scholar 

  • Ibrahima AA, Darb GN, Zaidia SA, Umara A, Abakerb M, Bouzidb H, Baskoutasd S (2012) Growth and properties of Ag-doped ZnO nanoflowers for highly sensitive phenyl hydrazine chemical sensor application. Talanta 93:257–263

    Article  Google Scholar 

  • Klingshrin C (2007) ZnO: material, physics, applications. Chem Phys Chem 8:782–803

    Article  Google Scholar 

  • Koch U, Fojtik A, Weller H (1985) Preparation of extremely small ZnO particles, fluorescence phenomena and size quantization effects. Chem Phys Let 122:507–510

    Article  CAS  Google Scholar 

  • Kondawar SB, Hedau MJ, Tabhane VA, Dongre SP, Mahatme UB, Mondal RA (2006) Characterizations of zinc oxide nanoparticles reinforced conducting polyaniline composites. Mod Phys Let B 20:1461–1470

    Article  CAS  Google Scholar 

  • Kryszewaski M (1991) Heterogeneous conducting polymeric systems: dispersions, blends, crystalline conducting networks—an introductory presentation. Synth Met 45:289–296

    Article  Google Scholar 

  • Kunteppa H, Roy AS, Koppalkar AR, Prasad MVNA (2010) Synthesis and morphological change in poly (ethylene oxide): sodium chlorate based polymer electrolyte complex with polyaniline. Phys B 406:3997–4162

    Article  Google Scholar 

  • Luo J, Huang HG, Zhang HP, Wu LL, Lin ZH, Hepel M (2000) Studies on photoelectrochemistry of nano-particulate TiO2/PANI/PATP film on Au electrodes. J New Mat Electrochem Syst 3:249–252

    CAS  Google Scholar 

  • Luo J, Huaiguo H, Zhonghua L, Maria H (2002) Photoelectrochemical behavior of p-ATP/PANI film and nanoparticulate p-ATP/ PANI/ TiO2 film on Au electrodes. In: Rubinson JF, Mark HB Jr (eds) ACS symposium series 832. Conducting polymers and polymer electrolytes from biology to photovoltaics. American Chemical Society, Washington, DC

  • Ma P, Mo S, Tang B, Kim J (2010) Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites. Carbon 48:1824–1834

    Article  CAS  Google Scholar 

  • MacDiarmid AG, Epstein AJ (1989) Charge transfer in polymeric system. Faraday Discuss Chem Soc 88:317–332

    Article  CAS  Google Scholar 

  • McCall RP, Grinder JM, Leng JM (1990) Spectroscopy and defect states in polyaniline. Spectroscopy and defect states in polyaniline. Phys Rev B 41:5202–5213

    Article  CAS  Google Scholar 

  • Patil SL, Pawar SG, Chougule MA, Raut BT, Godse PR, Sen S, Patil VB (2012) Structural, morphological, optical, and electrical properties of PANI–ZnO nanocomposites. Int J Polym Mater 61:809–820

    Article  CAS  Google Scholar 

  • Pethkar S, Patil RC, Kher JA (1999) Deposition and characterization of CdS nanoparticle/polyaniline composite films. Thin Solid Films 349:105–109

    Article  CAS  Google Scholar 

  • Roy AS, Anilkumar KR (2011) Core-shell method of synthesis, characterizations, and ac conductivity studies of polyaniline/n-TiO2 composites. J Appl Poly Sci 121:675–680

    Article  CAS  Google Scholar 

  • Roy AS, Anilkumar KR (2012) Studies of AC conductivity and dielectric relaxation behavior of CdO-doped nanometric polyaniline. J Appl Poly Sci 123:1928–1934

    Article  CAS  Google Scholar 

  • Shi S, Zhang L, Li J (2009) Electrical and dielectric properties of multiwall carbon nanotube/polyaniline composites. J Polym Res 16:395–399

    Article  CAS  Google Scholar 

  • Skotheim T, Marcel D (1986) Handbook of conducting polymers, vol 1–2. Marcel Dekker, New York

    Google Scholar 

  • Spanhel L, Anderson MA (1991) Semiconductor clusters in the sol–gel process: quantized. J Am Chem Soc 113:2826–2833

    Article  CAS  Google Scholar 

  • Stafstrom S, Bredas JL, Epstein AJ (1987) Polaron lattice in highly conducting polyaniline: theoretical and optical studies. Phys Rev Lett 59:1464–1467

    Article  CAS  Google Scholar 

  • Stoyanov H, Kollosche M, Risse S, McCarthy DN, Kofod G (2011) Elastic block copolymer nanocomposites with controlled interfacial interactions for artificial muscles with direct voltage control. Soft Matter 7:194–202

    Article  CAS  Google Scholar 

  • Tseng C, Chou Y, Liu C, Liu Y, Ger M, Shu Y (2012) Microwave-assisted hydrothermal synthesis of zinc oxide particles starting from chloride precursor. Mater Res Bull 47:96–100

    Article  CAS  Google Scholar 

  • Wang ZL (2004) Nanostrtured of zinc oxide. Mater Today 7:26–33

    Article  CAS  Google Scholar 

  • Zhang WZ, Park BJ, Choi HJ (2010) Colloidal graphene oxide/polyaniline nanocomposite and its electrorheology. Chem Commun 46:5596–5598

    Article  CAS  Google Scholar 

  • Zuo F, Angelopoulos M, MacDiarmid AG (1987) Transport studies of protonated emeraldine polymer: a granular polymeric metal system. Phys Rev B 36:3475–3478

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank VGST, Bangalore Government of Karnataka VGST Department of Information Technology, Biotechnology and Science & Technology Financial support (SMYSR-D38/7). We thank J M Deshpande, Retd. EE, KPCL for editing works.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anilkumar Koppalkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, A., Parveen, A., Deshpande, R. et al. Microscopic and dielectric studies of ZnO nanoparticles loaded in ortho-chloropolyaniline nanocomposites. J Nanopart Res 15, 1337 (2013). https://doi.org/10.1007/s11051-012-1337-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1337-z

Keywords

Navigation