Skip to main content
Log in

Hydroxy functionalized ionic liquids as promising electrolytes for supercapacitor study of α-Fe2O3 thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, we are exploring hydroxy functionalized ionic liquids (HFILs) as electrolytes in electrochemical studies of Fe2O3 thin films in aqueous medium. The thin films are deposited by simple and cost effective successive ionic layer adsorption and reaction (SILAR) method at room temperature. Four HFILs, [HEMIM][Cl], [TEHEA][Cl], [(EtOH)NH3][Ac] and [(EtOH)3NH][Ac] are synthesized and their aqueous solutions have been studied as electrolytes. Syntheses of ILs are confirmed by NMR spectra whereas the structural and surface properties of Fe2O3 thin film is determined by X-ray diffraction pattern (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDAX) and Brunauer–Emmett–Teller (BET) analysis. XRD pattern confirms the rhombohedral phase of α-Fe2O3 (hematite). Electrochemical performance of Fe2O3 electrode in 0.1 M HFILs is investigated with cyclic voltammetry (CV), galavanostatic charge/discharge (GCD) analysis and electrochemical impedance spectroscopy (EIS). Fe2O3 electrode exhibited good capacitive nature in all HFILs, however, [HEMIM][Cl] conferred highest specific capacitance of 124 Fg−1 at 4.0 mA cm−2 current density amongst the studied HFILs. Good cycle stability and up to 91% retention of capacitance over 1000 cycles is availed with [HEMIM][Cl]. Such promising results are strongly emphasizing the possible utilization of HFILs as environmental benign media in supercapacitor application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K.N. Marsh, J.A. Boxall, R. Lichtenthaler, Fluid Phase Equilibr. 219, 93 (2004)

    Article  Google Scholar 

  2. S. Zhu, R. Chen, Y. Wu, Q. Chen, X. Zhang, Z. Yu, Chem. Biochem. Eng. Q. 23, 207 (2009)

    Google Scholar 

  3. N.V. Plechkova, K.R. Seddon, Chem. Soc. Rev. 37, 123 (2008)

    Article  Google Scholar 

  4. M. Smiglak, J.M. Pringle, X. Lu, L. Han, S. Zhang, H. Gao, D.R. MacFarlane, R.D. Rogers, Chem. Commun. 50, 9228 (2014)

    Article  Google Scholar 

  5. M. Galinski, A. Lewandowski, I. Stepniak, Electrochim. Acta 51, 5567 (2006)

    Article  Google Scholar 

  6. H. Ohno, Electrochemical Aspects of Ionic Liquids. (Wiley, Hoboken, 2005)

    Book  Google Scholar 

  7. A. Balducci, U. Bardi, S. Caporali, M. Mastragostino, F. Soavi, Electrochem. Commun. 6, 566 (2004)

    Article  Google Scholar 

  8. E. Frackowiak, G. Lota, J. Pernak, Appl. Phys. Lett. 86, (2005)

  9. M. Anouti, L. Timperman, Phys. Chem. Chem. Phys. 15, 6539 (2013)

    Article  Google Scholar 

  10. J.S. Kwon, B.C. Kim, G.G. Wallace, J.H. Park, S.H. Kim, J.M. Ko, H. Ahn, Mol. Cryst. Liq. Cryst. 520, 538 (2010)

    Article  Google Scholar 

  11. C.P. Fu, Y.F. Kuang, Z.Y. Huang, X. Wang, Y.F. Yin, J.H. Chen, H.H. Zhou, J. Solid State Electrochem. 15, 2581 (2011)

    Article  Google Scholar 

  12. J.S. Shaikh, R.C. Pawar, R.S. Devan, Y.R. Ma, P.P. Salvi, S.S. Kolekar, P.S. Patil, Electrochim. Acta 56, 2127 (2011)

    Article  Google Scholar 

  13. M.T. Alam, M.M. Islam, T. Okajima, T. Ohsaka, J. Phys. Chem. C 112, 16600 (2008)

    Article  Google Scholar 

  14. T. Tsuda, C.L. Hussey, Electrochem. Soc. Interface 16, 42 (2007)

    Google Scholar 

  15. M.M. Vadiyar, S.K. Patil, S.C. Bhise, A.V. Ghule, S.H. Han, S.S. Kolekar, Eur. J. Inorg. Chem. 36, 5832–5838 (2015)

    Article  Google Scholar 

  16. D.V. Awale, S.C. Bhise, S.K. Patil, M.M. Vadiyar, P.R. Jadhav, G.J. Navathe, J.H. Kim, P.S. Patil, S.S. Kolekar, Ceram. Int. 42, 2699 (2016)

    Article  Google Scholar 

  17. M. Vranes, A. Tot, S. Armakovic, S. Gadzuric, J. Chem. Thermodyn 95, 174 (2016)

    Article  Google Scholar 

  18. L.C. Branco, J.N. Rosa, J.J.M. Ramos, C.A.M. Afonso, Chem. Eur. J. 8, 3671 (2002)

    Article  Google Scholar 

  19. J.D. Holbrey, M.B. Turner, W.M. Reichert, R.D. Rogers, Green Chem. 5, 731 (2003)

    Article  Google Scholar 

  20. M. Fakhraee, B. Zandkarimi, H. Salari, M.R. Gholami, J. Phys. Chem. B 118, 14410 (2014)

    Article  Google Scholar 

  21. J.Y.Z. Chiou, J.N. Chen, J.S. Lei, I.J.B. Lin, J. Mater. Chem. 16, 2972 (2006)

    Article  Google Scholar 

  22. S.G. Zhang, X.J. Qi, X.Y. Ma, L.J. Lu, Y.Q. Deng, J. Phys. Chem. B 114, 3912 (2010)

    Article  Google Scholar 

  23. X.S. Hu, J. Yu, H.Z. Liu, J. Chem. Eng. Data. 51, 691 (2006)

    Article  Google Scholar 

  24. J. Sun, S.J. Zhang, W.G. Cheng, J.Y. Ren, Tetrahedron Lett. 49, 3588 (2008)

    Article  Google Scholar 

  25. Z.F. Fei, T.J. Geldbach, D.B. Zhao, P.J. Dyson, Chem. Eur. J. 12, 2122 (2006)

    Article  Google Scholar 

  26. Y.S. Qu, C.P. Huang, Y.L. Song, J. Zhang, B.H. Chen, Bioresour. Technol. 121, 462 (2012)

    Article  Google Scholar 

  27. S. Sakthivel, R.L. Gardas, J.S. Sangwai, J. Mol. Liq. 221, 323 (2016)

    Article  Google Scholar 

  28. M.I. Hossain, M. El-Harbawi, Y.A. Noaman, M.A.B. Bustam, N.B.M. Alitheen, N.A. Affandi, G. Hefter, C.Y. Yin, Chemosphere 84, 101 (2011)

    Article  Google Scholar 

  29. M.I. Hossain, M. El-Harbawi, N.B.M. Alitheen, Y.A. Noaman, J.M. Leveque, C.Y. Yin, Ecotoxicol. Environ. Saf 87, 65 (2013)

    Article  Google Scholar 

  30. S.K. Tang, G.A. Baker, H. Zhao, Chem. Soc. Rev. 41, 4030 (2012)

    Article  Google Scholar 

  31. S.H. Yeon, K.S. Kim, S. Choi, H. Lee, H.S. Kim, H. Kim, Electrochim. Acta 50, 5399 (2005)

    Article  Google Scholar 

  32. T.Y. Wu, S.G. Su, K.F. Lin, Y.C. Lin, H.P. Wang, M.W. Lin, S.T. Gung, I.W. Sun, Electrochim. Acta 56, 7278 (2011)

    Article  Google Scholar 

  33. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, Chem. Soc. Rev. 44, 7484 (2015)

    Article  Google Scholar 

  34. S. Chaudhari, D. Bhattacharjya, J.S. Yu, RSC Adv. 3, 25120 (2013)

    Article  Google Scholar 

  35. A. Mirzaei, B. Hashemi, K. Janghorban, J. Mater. Sci. Mater. Electron. 27, 3109 (2016)

    Article  Google Scholar 

  36. A.U. Ubale, M.R. Belkhedkar, J. Mater. Sci. Technol. 31, 1 (2015)

    Article  Google Scholar 

  37. D. Sarkar, M. Mandal, K. Mandal, ACS Appl. Mater. Interfaces 5, 11995 (2013)

    Article  Google Scholar 

  38. S. Shivakumara, T.R. Penki, N. Munichandraiah, J. Solid State Electrochem. 18, 1057 (2014)

    Article  Google Scholar 

  39. B.J. Lokhande, R.C. Ambare, R.S. Mane, S.R. Bharadwaj, Curr. Appl. Phys. 13, 985 (2013)

    Article  Google Scholar 

  40. P.M. Kulal, D.P. Dubal, C.D. Lokhande, V.J. Fulari, J. Alloys Compd. 509, 2567 (2011)

    Article  Google Scholar 

  41. H.M. Pathan, C.D. Lokhande, Bull. Mater. Sci. 27, 85 (2004)

    Article  Google Scholar 

  42. M.M. Vadiyar, S.S. Kolekar, N.G. Deshpande, J.Y. Chang, A.A. Kashale, A.V. Ghule, Ionics 1, 1–9 (2016)

    Google Scholar 

  43. S. Sheik Fareed, N. Mythili, H. Mohamed Mohaideen, K. Saravanakumar, R. Chandramohan, G. Ravi, J. Mater. Sci. Mater. Electron. 27, 3420 (2016)

    Article  Google Scholar 

  44. M.M. Vadiyar, S.C. Bhise, S.K. Patil, S.A. Patil, D.K. Pawar, A.V. Ghule, P.S. Patil, S.S. Kolekar, RSC Adv. 5, 45935 (2015)

    Article  Google Scholar 

  45. B.R. Sathe, P.S. Walke, I.S. Mulla, V.K. Pillai, Chem. Phys. Lett. 493, 121 (2010)

    Article  Google Scholar 

  46. K.S.W. Sing, R.T. Williams, Adsorpt. Sci. Technol. 22, 773 (2004)

    Article  Google Scholar 

  47. M. Thommes, Chem. Ing. Tech. 82, 1059 (2010)

    Article  Google Scholar 

  48. M.M. Vadiyar, S.C. Bhise, S.K. Patil, S.S. Kolekar, J.-Y. Chang, A.V. Ghule, Chem. Select. 1, 959 (2016)

    Google Scholar 

  49. A. Paravannoor, S.V. Nair, P. Pattathil, M. Manca, A. Balakrishnan, Chem. Commun. 51, 6092 (2015)

    Article  Google Scholar 

  50. X.J. He, J.W. Lei, Y.J. Geng, X.Y. Zhang, M.B. Wu, M.D. Zheng, J. Phys. Chem. Solids 70, 738 (2009)

    Article  Google Scholar 

  51. Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, L.C. Qin, Phys. Chem. Chem. Phys. 13, 17615 (2011)

    Article  Google Scholar 

  52. D.P. Dubal, P. Gomez-Romero, B.R. Sankapal, R. Holze, Nano. Energy 11, 377 (2015)

    Article  Google Scholar 

  53. C. Dong, Y. Wang, J. Xu, G. Cheng, W. Yang, T. Kou, Z. Zhang, Y. Ding, J. Mater. Chem. A 2, 18229 (2014)

    Article  Google Scholar 

  54. M.M. Vadiyar, S.C. Bhise, S.S. Kolekar, J.Y. Chang, K.S. Ghule, A.V. Ghule, J. Mater. Chem. A 4, 3504 (2016)

    Article  Google Scholar 

  55. B. Vidhyadharan, I.I. Misnon, R.A. Aziz, K.P. Padmasree, M.M. Yusoff, R. Jose, J. Mater. Chem. A 2, 6578 (2014)

    Article  Google Scholar 

  56. Y. Wang, C.X. Guo, J. Liu, T. Chen, H. Yang, C.M. Li, Dalton Trans. 40, 6388 (2011)

    Article  Google Scholar 

  57. K. Bhattacharya, P. Deb, Dalton Trans. 44, 9221 (2015)

    Article  Google Scholar 

  58. X.J. Wang, Y.L. Chi, T.C. Mu, J. Mol. Liq. 193, 262 (2014)

    Article  Google Scholar 

  59. D. Wang, Q. Wang, T. Wang, Nanotechnology 22, 135604 (2011)

    Article  Google Scholar 

  60. G. Binitha, M.S. Soumya, A.A. Madhavan, P. Praveen, A. Balakrishnan, K.R.V. Subramanian, M.V. Reddy, S.V. Nair, A.S. Nair, N. Sivakumar, J. Mater. Chem. A 1, 11698 (2013)

    Article  Google Scholar 

  61. A. Abdi, M. Trari, Electrochim. Acta 111, 869 (2013)

    Article  Google Scholar 

  62. R. Liu, Z. Jiang, Q. Liu, X. Zhu, L. Liu, L. Ni, C. Shen, RSC Adv 5, 91127 (2015)

    Article  Google Scholar 

  63. S. Shivakumara, T.R. Penki, N. Munichandraiah, ECS Electrochem. Lett. 2, A60 (2013)

    Article  Google Scholar 

  64. M. Mallouki, F. Tran-Van, C. Sarrazin, P. Simon, B. Daffos, A. De, C. Chevrot, J.F. Fauvarque, J. Solid State Electrochem. 11, 398 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The authors SKP, MMV under the UGC-BSR Meritorious Students fellowship and SCB under RGNF are thankful to the University Grants Commission (UGC) for financial support and DST-FIST, Department of Chemistry, Shivaji University, Kolhapur.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin H. Kim or Sanjay S. Kolekar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 424 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, S.K., Vadiyar, M.M., Bhise, S.C. et al. Hydroxy functionalized ionic liquids as promising electrolytes for supercapacitor study of α-Fe2O3 thin films. J Mater Sci: Mater Electron 28, 11738–11748 (2017). https://doi.org/10.1007/s10854-017-6978-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6978-3

Keywords

Navigation