Skip to main content

Advertisement

Log in

Supercapacitor based on graphene and ionic liquid electrolyte

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A new kind of supercapacitor by using chemical reduced graphene (CRG) as electrode material and ionic liquid with addition of acetonitrile as electrolyte is assembled and investigated. CRG materials with high surface area are prepared by chemical reduction of graphene oxide. The capacitive properties of the supercapacitor composed of the CRG and ionic liquid electrolyte are studied by electrical impedance spectroscopy, cyclic voltammetry and galvanostatic charge–discharge. With the combined advantages of graphene and ionic liquid, the supercapacitor shows perfect performance. The supercapacitor possesses wide cell voltage and good stability. The specific capacitance, energy density, and specific power density of the present supercapacitor are 132 Fg−1, 143.7 Wh kg−1, and 2.8 kW kg−1, respectively. The results demonstrate the potential application of electrical energy storage devices with high performance based on this new kind of supercapacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Conway BE, Birss V, Wojtowicz J (1997) J Power Sources 66:1–14

    Article  CAS  Google Scholar 

  2. Zhou HH, Chen H, Luo SL, Lu GW, Wei WZ, Kuang YF (2005) J Solid State Electrochem 9:574–580

    Article  CAS  Google Scholar 

  3. Wang KX, Wang YG, Wang YR, Hosono E, Zhou HS (2009) J Phys Chem C 113:1093–1097

    Article  CAS  Google Scholar 

  4. Kotz R, Carlen M (2000) Electrochim Acta 45:2483–2498

    Article  CAS  Google Scholar 

  5. Wang Y, Shi ZQ, Huang Y, Ma YF, Wang CY, Chen MM, Chen YS (2009) J Phys Chem C 113:13103–13107

    Article  CAS  Google Scholar 

  6. Lee JY, An KH, Heo JK, Lee YH (2003) J Phys Chem B 107:8812–8815

    Article  CAS  Google Scholar 

  7. Pan H, Poh CK, Feng YP, Lin JY (2007) Chem Mater 19:6120–6125

    Article  CAS  Google Scholar 

  8. Reddy ALM, Ramaprabhu S (2007) J Phys Chem C 111:7727–7734

    Article  CAS  Google Scholar 

  9. Liu KK, Hu ZL, Xue R, Zhang JR, Zhu JJ (2008) J Power Sources 179:858–862

    Article  CAS  Google Scholar 

  10. Jang J, Bae J, Choi M, Yoon SH (2005) Carbon 43:2730–2736

    Article  CAS  Google Scholar 

  11. Du X, Wang CY, Chen MM, Jiao Y, Wang J (2009) J Phys Chem C 113:2643–2646

    Article  CAS  Google Scholar 

  12. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Nature 442:282–286

    Article  CAS  Google Scholar 

  13. Ponomarenko LA, Schedin F, Katsnelson MI, Yang R, Hill EW, Novoselov KS, Geim AK (2008) Science 320:356–358

    Article  CAS  Google Scholar 

  14. Alwarappan S, Erdem A, Liu C, Li CZ (2009) J Phys Chem C 113:8853–8857

    Article  CAS  Google Scholar 

  15. Stoller MD, Park S, Zhu YW, An J, Ruoff RS (2008) Nano Lett 8:3498–3502

    Article  CAS  Google Scholar 

  16. Zhang JR, Jiang DC, Chen B, Zhu JJ, Jiang LP, Fang HQ (2001) J Electrochem Soc 148:A1362–A1367

    Article  CAS  Google Scholar 

  17. Lu W, Qu LT, Henry K, Dai LM (2009) J Power Sources 189:1270–1277

    Article  CAS  Google Scholar 

  18. Anderson JL, Ding J, Welton T, Armstrong DW (2002) J Am Chem Soc 124:14247–14254

    Article  CAS  Google Scholar 

  19. Charkrabarty D, Seth D, Chakraborty A, Sarkar N (2005) J Phys Chem B 109:5753–5758

    Article  Google Scholar 

  20. Wang SF, Chen T, Zhang ZL, Pang DW, Wong KY (2007) Electrochem Commun 9:1709–1714

    Article  CAS  Google Scholar 

  21. Dupont J, Consorti CS, Suarez PAZ, Souza RF (2002) Org Synth 79:236–243

    CAS  Google Scholar 

  22. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  23. Shao YY, Wang J, Engelhard M, Wang CM, Lin YH (2010) J Mater Chem 20:743–748

    Article  CAS  Google Scholar 

  24. Cao L, Xu F, Liang YY, Li HL (2004) Adv Mater 20:1853–1857

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. 20673036, J0830415) and Hunan Provincial Natural Science Foundation of China (Grant No. 09JJ3025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yafei Kuang or Haihui Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, C., Kuang, Y., Huang, Z. et al. Supercapacitor based on graphene and ionic liquid electrolyte. J Solid State Electrochem 15, 2581–2585 (2011). https://doi.org/10.1007/s10008-010-1248-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1248-9

Keywords

Navigation