Skip to main content
Log in

Influence of concentration of sulfuric and hydrochloric acids on corrosion resistance of porous titanium

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, comparative studies of the corrosion behavior of titanium manufactured by powder metallurgy (porous) and traditional technology (wrought) in aqueous solutions of hydrochloric and sulfuric acids of various concentrations were performed. Electrochemical, static immersion tests, and microstructural characterization pursued an influence of acid concentration on corrosion resistance and corrosion behavior. As expected, porous titanium had worse electrochemical performance and corrosion rate than non-porous wrought titanium in the studied acids; the presence of pores in titanium accounts for this. According to SEM and EDX analysis of corroded titanium surfaces, the corrosion mechanisms and their main differences for porous and non-porous wrought titanium were established. The safe use of porous titanium in sulfuric acid in the concentration range above 40% and up to 60% was confirmed. It was determined that the use of porous titanium in hydrochloric acid be limited due to its tendency to pitting. To improve the anticorrosion properties of porous titanium in hydrochloric acid, it is recommended to reduce the negative effect of pores, for example, by surface modification. This work demonstrates the range of acid concentrations beneficial for the operation of porous titanium. It provides referenceable data for designing and manufacturing products in the chemical, metallurgical, and other branches of industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data and code availability

The data presented in this study are available upon request from the corresponding author.

References

  1. Bolzoni L, Ruiz-Navas EM, Gordo E (2017) Quantifying the properties of low-cost powder metallurgy titanium alloys. Mater Sci Eng 27:47–53. https://doi.org/10.1016/j.msea.2017.01.049

    Article  CAS  Google Scholar 

  2. Fang ZZ, Paramore JD, Sun P, et al (2018) Powder metallurgy of titanium—past, present, and future. Int Mater Rev 7:407–459. https://doi.org/10.1080/09506608.2017.1366003

    Article  CAS  Google Scholar 

  3. Pałka K, Pokrowiecki R, Krzywicka M (2019) Chapter 3—Porous titanium materials and applications. In: Froes F, Qian Ma, Niinomi M (eds) Titanium for consumer applications. Elsevier, Netherland

    Google Scholar 

  4. Fang ZZ, Sun P (2012) Pathways to optimize performance/cost ratio of powder metallurgy titanium—a perspective. Key Eng Mater 520:15–23. https://doi.org/10.4028/www.scientific.net/kem.520.15

    Article  Google Scholar 

  5. Ma G, Dong S, Cheng T, Ivasishin O (2023) Pure Ti fabricated by cold isostatic pressing and sintering TiH2 powder. Mater Manuf Process 38(2):170–179. https://doi.org/10.1080/10426914.2022.2105878

    Article  CAS  Google Scholar 

  6. Dinh Phuong D, Van Duong L, Van Luan N, Ngoc Anh N, Van Trinh P (2019) Microstructure and mechanical properties of Ti6Al4V alloy consolidated by different sintering techniques. Metals 10:1033. https://doi.org/10.3390/met9101033

    Article  CAS  Google Scholar 

  7. Cao D (2023) An investigation on surface coated continuous flax fiber reinforced natural sandwich composites by vacuum-assisted material extrusion process. Process[J/OL]. https://doi.org/10.13140/RG.2.2.26091.41760

    Article  Google Scholar 

  8. Froes FH, Mashl SJ, Moxson VS, et al (2004) The technologies of titanium powder metallurgy. JOM 56:46–48. https://doi.org/10.1007/s11837-004-0252-x

    Article  CAS  Google Scholar 

  9. Froes FH, Eylon D (1990) Powder metallurgy of titaniium alloys. Int Mater Rev 35:162–184. https://doi.org/10.1179/095066090790323984

    Article  CAS  Google Scholar 

  10. Dong S, Ma G, Lei P, Cheng T, Savvakin D, Ivasishin O (2021) Comparative study on the densification process of different titanium powders. Adv Powder Technol 32:2300–2310. https://doi.org/10.1016/j.apt.2021.05.009

    Article  CAS  Google Scholar 

  11. Piao R, Zhu W, Ma L, Zhao P, Hu B (2022) Characterization of hot deformation of near alpha titanium alloy prepared by TiH2-based powder metallurgy. Materials 15:1–19. https://doi.org/10.3390/ma15175932

    Article  CAS  Google Scholar 

  12. Mimoto T, Nakanishi N, Umeda J, Kondoh K (2012) Fabrication of powder metallurgy pure Ti material by using thermal decomposition of TiH2. J Stage 37:326–331. https://doi.org/10.7791/jhts.37.326

    Article  Google Scholar 

  13. Zhang HR, Niu HZ, Zang MC, Yue JK, Zhang DL (2020) Microstructures and mechanical behavior of a near α titanium alloy prepared by TiH2-based powder metallurgy. Mater Sci Eng A 770:1–8. https://doi.org/10.1016/j.msea.2019.138570

    Article  CAS  Google Scholar 

  14. Song Y, Stasiuk O, Savvakin D, Ivasishin O, Xu X (2022) Comparative study of microstructure and characteristics of Ti6Al4V/TiB composites manufactured with various powder metallurgy approaches. Metallofiz Noveishie Tekhnol 44:211–222. https://doi.org/10.15407/mfint.44.02.0211

    Article  CAS  Google Scholar 

  15. Ivasishin OM, Savvakin DG, Bondareva КA, Moxson VS, Duz VA (2005) Proyzvodstvo tytanovykh splavov y detalei ekonomychnym metodom poroshkovoi metallurhyy dlia shyrokomasshtabnoho prymenenyia [Production of titanium alloys and parts by the economic method of powder metallurgy for large-scale application]. Nauka ta innovat Sci Innov 2:44–57. https://doi.org/10.15407/scin1.02.044. (in Russian)

    Article  Google Scholar 

  16. Skrebtsov AA (2015) Pidvyshchennia mekhanichnykh i sluzhbovykh vlastyvostei spechenykh tytanovykh splaviv [Improves mechanical and service properties of sintered titanium alloys]. Candidate’s thesis Zaporizhzhia: Zaporizhzhia National University, p 20 (in Ukrainian)

  17. Mordyuk BN, DekhtyarAI SDG, Khripta NI (2022) Tailoring porosity and microstructure of alpha titanium by combining powder metallurgy and ultrasonic impact treatment to control elastic and fatigue properties. J Mater Eng Perform 31:5668–5678. https://doi.org/10.1007/s11665-022-06633-7

    Article  CAS  Google Scholar 

  18. Peng Q, Yang B, Friedrich B (2018) Porous titanium parts fabricated by sintering of TiH2 and Ti powder mixtures. Mater Eng Perform 27:228–242. https://doi.org/10.1007/s11665-017-3099-3

    Article  CAS  Google Scholar 

  19. Ivasishin OM, Anokhin V, Demidik A, Savvakin DG (2000) Cost_effective blended elemental powder metallurgy of titanium alloys for transportation application. Key Eng Mater 188:55–62. https://doi.org/10.4028/www.scientific.net/KEM.188.55

    Article  CAS  Google Scholar 

  20. Casanova L, Gruarin M, Pedeferriи M, Ormellese M (2022) A comparison between corrosion performances of titanium grade 2 and 7 in strong reducing acids. Mater Corros 72:1506–1517. https://doi.org/10.1002/maco.202112392

    Article  CAS  Google Scholar 

  21. Zhong X, Yu S, Hu J, Chen L, Shi Y, Zhang Z, Gao S, Zeng D, Shi T (2017) Corrosion electrochemical behaviors of titanium in HCl acidizing fluid used in natural gas exploitation. Int J Electrochem Sci 12:2875–2892. https://doi.org/10.20964/2017.04.26

    Article  CAS  Google Scholar 

  22. Ivasishin O (2015) Titanium powder metallurgy: low-cost titanium hydride powder metallurgy. Butterworth Heinemann, London, pp 117–148

    Book  Google Scholar 

  23. Chirico C, Vaz Romero A, Gordo E, Tsipas SA (2022) Improvement of wear resistance of low-cost powder metallurgy β-titanium alloys for biomedical applications. Surf Coat Technol 434:128–207. https://doi.org/10.1016/j.surfcoat.2022.128207

    Article  CAS  Google Scholar 

  24. Pohreluyk IM, Lavrys SM, Lukyanenko OH (2021) Influence of porosity on wear resistance of sintered titanium under boundary lubrication. J Frict Wear 42:461–465. https://doi.org/10.3103/S1068366621060076

    Article  Google Scholar 

  25. Devilliers D, Dinh MT, Mahe E et al (2006) Behavior of titanium in sulphuric asid application to DSAs. J New Mater Electrochem Syst 9:221–232

    CAS  Google Scholar 

  26. Yu SY, Brodrick CW, Ryan MP, Scully JR (1999) Effects of Nb and Zr alloying additions on the activation behavior of Ti in hydrochloric acid. J Electrochem Soc 12:4429–4438. https://doi.org/10.1149/1.1392655

    Article  Google Scholar 

  27. Baoxian S, Liangshun L, Binbin W, et al (2021) Annealed microstructure dependent corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy. J Mater Sci Technol 62:234–248. https://doi.org/10.1016/j.jmst.2020.05.058

    Article  CAS  Google Scholar 

  28. Bodunrin MO, et al (2020) Corrosion behavior of titanium alloys in acidic and saline media: role of alloy design, passivation integrity, and electrolyte modification. Corros Rev 38:25–47. https://doi.org/10.1515/corrrev-2019-0029

    Article  CAS  Google Scholar 

  29. Pogrelyuk IM, Ovchynnykov OV, Skrebtsov AA, et al (2016) Effect of the starting powder mixture on the porosity and corrosion properties of sintered titanium in corrosive media. Powder Metall Metal Ceram 55:445–453. https://doi.org/10.1007/s11106-016-9825-9

    Article  CAS  Google Scholar 

  30. Tomashov ND, Chernova GP (1967) The phenomenon of passivity in metals. In: Passivity and protection of metals against corrosion. Springer, Boston

  31. Hydrochloric Acid (2001) Chemicals economics handbook. SRI International, pp 733.4000A–733.3003F

  32. Stern M, Geary AL (1957) Electrochemical polarization: I. A theoretical analysis of the shape of polarization curves. J Electrochem Soc 104:56–61. https://doi.org/10.1149/1.2428496

    Article  CAS  Google Scholar 

  33. Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions. National Association of Corrosion Engineers, Houston

    Google Scholar 

  34. Bautista A, Moral C, Blanco G, Velasco F (2005) Influencece of sintering on the corrosion behavior of a Ti-6Al-4V alloy. Mater Corros 56:98–103. https://doi.org/10.1002/maco.200403818

    Article  CAS  Google Scholar 

  35. Seah KHW, Chen X (1993) A comparison between the corrosion characteristics of 316 stainless steel, solid titanium, and porous titanium. Corros Sci 34:1841–1851. https://doi.org/10.1016/0010-938X(93)90021-8

    Article  CAS  Google Scholar 

  36. Seah KHW, Thampuran R, Chen X, Teoh SH (1995) A comparison between the corrosion behavior of sintered and unsintered porous titanium. Corros Sci 37:1333–1340. https://doi.org/10.1016/0010-938X(95)00033-G

    Article  CAS  Google Scholar 

  37. Xie F, He X, Yu J, et al (2016) Fabrication and characterization of porous Ti-4Mo alloy for biomedical applications. J Porous Mater 23:783–790. https://doi.org/10.1007/s10934-016-0133-z

    Article  CAS  Google Scholar 

  38. Tomashov ND, Chernova GP, Ruscol YuS, Ayuyan GA (1974) The passivation of alloys on titanium bases. Electrochim Acta 19:159–172. https://doi.org/10.1016/0013-4686(74)85012-7

    Article  CAS  Google Scholar 

  39. Stern M, Wissenberg H (1959) The electrochemical behavior and passivity of titanium. J Electrochem Soc 106:755–759. https://doi.org/10.1149/1.2427492

    Article  CAS  Google Scholar 

  40. Abdel Hady Z, Pagetti J (1976) Anodicbehavior of titanium in concentrated sulphuric acid solutions. influence of some oxidizing inhibitors. J Appl Electrochem 6:333–338. https://doi.org/10.1007/BF00608918

    Article  CAS  Google Scholar 

  41. Prando D, Brenna A, Diamanti MV, et al (2017) Corrosion of titanium: Part 1: aggressive environments and main forms of degradation. J Appl Biomater Funct Mater 15:291–302. https://doi.org/10.5301/jabfm.5000387

    Article  CAS  Google Scholar 

  42. Pohrelyuk I, Lavrys S, Shliakhetka Ket al (2023) Influence of manufacturing parameters on microstructure evolution and corrosion resistance of powder metallurgy titanium. JOM 75:816–824. https://doi.org/10.1007/s11837-022-05627-z

    Article  CAS  Google Scholar 

  43. Zhong X, Siyu Yu, Junying Hu, Chen L, Shi Y, Zhang Z, Gao S, Zeng D, Shi T (2017) Corrosion electrochemical behaviors of titanium in hclacidizing fluid used in natural gas exploitation. Int J Electrochem Sci 12:2875–2892. https://doi.org/10.20964/2017.04.26

    Article  CAS  Google Scholar 

  44. Alyousif OM (2022) Hydrogen-induced cracking of pure titanium in hydrochloric and sulfuric acid solutions using constant load method. In: TMS 2022 151st annual meeting & exhibition supplemental proceedings. Springer, Cham, pp 1127–1137. https://doi.org/10.1007/978-3-030-92381-5_107

  45. Shih DS, Robertson IM, Birnbaum HK (1988) Hydrogen embrittlement of α titanium: in situ tem studies. Acta Metal 36:111–124. https://doi.org/10.1016/0001-6160(88)90032-6

    Article  CAS  Google Scholar 

  46. Prando D, Brenna A, Mand D et al (2017) Corrosion of titanium: Part 1: aggressive environments and main forms of degradation. J Appl Biomater Funct Mater 15:291–302. https://doi.org/10.5301/jabfm.5000387

    Article  CAS  Google Scholar 

  47. Mizuno T, Shindo T, Morozumi T (1977) Growth rate of hydride layer produced on titanium surface by cathodic polarization. Corros Eng 26:185–193. https://doi.org/10.3323/jcorr1974.26.4_185

    Article  CAS  Google Scholar 

  48. Murai T, Ishikawa M, Miura C (1977) The absorption of hydrogen into titanium under cathodic polarization. Corros Eng 26:177–183. https://doi.org/10.3323/jcorr1974.26.4_177

    Article  CAS  Google Scholar 

  49. Hua F, Pasupathi P, Mon K, et al (2005) Modeling the hydrogen-induced cracking of titanium alloys in nuclear waste repository environments. JOM 57:20–26. https://doi.org/10.1007/s11837-005-0059-4

    Article  CAS  Google Scholar 

  50. Bautista A, Moral C, Blanco G, Velasco F (2005) Influence of sintering on the corrosion behavior of a Ti-6Al-4V alloy. Werkst Korros 56:98–103. https://doi.org/10.1002/maco.200403818

    Article  CAS  Google Scholar 

  51. Hidalgo AA, Frykholm R, Ebel T, Pyczak F (2017) Powder metallurgy strategies to improve properties and processing of titanium alloys: a review. Adv Eng Mater. 19(6):1600743. https://doi.org/10.1002/adem.201600743

    Article  CAS  Google Scholar 

  52. Pohrelyuk I, Fedirko V, Tkachuk O et al (2014) Corrosion resistance of titanium alloys with oxynitride coatings in concentrated inorganic acids. Mater Sci 50:269–276. https://doi.org/10.1007/s11003-014-9717-4

    Article  CAS  Google Scholar 

  53. Yongqiang Fu, Zhou F, Wang Q, Zhang M, Zhou Z (2020) Electrochemical and tribocorrosion performances of CrMoSiCN coating on Ti-6Al-4V titanium alloy in artificial seawater. Corros Sci 165:108385. https://doi.org/10.1016/j.corsci.2019.108385

    Article  CAS  Google Scholar 

  54. Oliveira V, Aguiar C, Vazquez A, Robin A, Barboza M (2014) Improving corrosion resistance of Ti-6Al-4V alloy through plasma-assisted PVD deposited nitride coatings. Corros Sci 88:317–327. https://doi.org/10.1016/j.corsci.2014.07.047

    Article  CAS  Google Scholar 

  55. Morita R, Azuma K, Inoue Sh, Miyano R, Takikawa H, Kobayashi A, Fujiwara E, Uchida H, Yatsuzuka M (2001) Corrosion resistance of TiN coatings produced by various dry processes. Surf Coat Technol 136:207–210. https://doi.org/10.1016/S0257-8972(00)01057-4

    Article  CAS  Google Scholar 

  56. Perry A (2013) Ion implantation of titanium alloys for biomaterial and other applications. Surf Eng 3:154–160. https://doi.org/10.1179/sur.1987.3.2.154

    Article  Google Scholar 

  57. Reverte E, Tsipas S, Gordo E (2020) Oxidation and corrosion behavior of new low-cost Ti-7Fe-3Al and Ti-7Fe-5Cr alloys from titanium hydride powders. Metals 10:254. https://doi.org/10.3390/met10020254

    Article  CAS  Google Scholar 

  58. Zhang Yu, Wang Z, Shi Y, Shao Y, Chenyu Gu (2019) Combined effect of heat treatment and sealing on the corrosion resistance of reactive plasma sprayed TiNx/TiOy coatings. Ceram Int 45:24545–24553. https://doi.org/10.1016/j.ceramint.2019.08.182

    Article  CAS  Google Scholar 

  59. Pohrelyuk I, Lukyanenko A, Tkachum O, Shlyahetka K (2019) Corrosion resistance of sintered commercially pure titanium in inorganic acids after oxidation and nitriding. JOM 71:4910–4916. https://doi.org/10.1007/s11837-019-03793-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Dr. Dmytro Savvakin and Kurdyumov Institute for Metal Physics in Ukraine for their support and manufacturing PM titanium samples. Kh. Shliakhetka is grateful for the support and the opportunity to continue this work during the implementation of the project Construction Center for the Application of Advanced Materials of the Slovak Academy of Sciences, project code ITMS 313021T081 with the support of the Operational Program for Research and Innovation, funded by the ERDF.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

SK contributed to conceptualization, formal analysis, investigation, and writing—original draft. PI contributed to supervision, project administration, and writing—review and editing CG contributed to writing—review and editing. PR and VH contributed to investigation and resources. LS contributed to methodology and resources.

Corresponding author

Correspondence to Khrystyna Shliakhetka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The work does not require ethical approval as no experiments involving human tissue were performed.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shliakhetka, K., Pohrelyuk, I., Chumalo, H. et al. Influence of concentration of sulfuric and hydrochloric acids on corrosion resistance of porous titanium. J Mater Sci 58, 15047–15060 (2023). https://doi.org/10.1007/s10853-023-08964-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08964-9

Navigation