Skip to main content
Log in

High Velocity Oxy-Fuel Thermally Sprayed rGO Reinforced Alumina-Based Coatings on 17-4 PH Steel: Exploring the Effect of Flame Heat Treatment

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present work focuses on exploring the effect of thermal treatment on HVOF thermally sprayed rGO-reinforced alumina-based coatings on 17-4 PH steel. Based on the previous study, an optimized coating composition (Al2O3-0.8CeO2-0.2 rGO) is selected for exploring the effect of flame heat treatment in terms of physical, tribological, mechanical, and electrochemical properties. The hardness (Vickers and scratch) and tribological responses are recorded using a CETR-UMT tribometer. The as-coated, treated, and worn surfaces are analyzed using Goniometer, Scanning electron microscope (SEM), Energy dispersive spectroscopy (EDS), Raman spectroscopy, and 3-D optical profilometer. Corrosive degradation is studied using Potentiodynamic polarization and Electrical impedance spectroscopy (EIS). The results revealed that the thermal treatment severely deteriorates the coating properties. The Vickers hardness and scratch hardness of the as-sprayed coating were reduced to one-third and one-ninth respectively, after the post-treatment process. The specific wear rate and corrosion rate increased by ≈165 times and ≈1500 times, respectively. Furthermore, the Raman, SEM, and EDS analysis of the corroded region of the heat-treated coating confirmed the formation of iron oxides. This deterioration in the heat-treated coating properties is attributed to the evaporation of the reinforced rGO from the as-sprayed coating making the coating highly porous. So, it is not advisable to heat treat the above-mentioned coating composition above 400 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. M.A. Zavareh, A.A.D.M. Sarhan, B.B.A. Razak, and W.J. Basirun, Plasma Thermal Spray of Ceramic Oxide Coating on Carbon Steel with Enhanced Wear and Corrosion Resistance for Oil and Gas Applications, Ceram. Int., 2014, 40, p 14267–14277. https://doi.org/10.1016/j.ceramint.2014.06.017

    Article  CAS  Google Scholar 

  2. H. Hu, L. Mao, S. Yin, H. Liao, and C. Zhang, Wear-Resistant Ceramic Coatings Deposited by Liquid Thermal Spraying, Ceram. Int., 2022, 48, p 33245–33255. https://doi.org/10.1016/j.ceramint.2022.07.267

    Article  CAS  Google Scholar 

  3. E. Sadeghi, N. Markocsan, S. Joshi, Advances in Corrosion-Resistant Thermal Spray Coatings for Renewable Energy Power Plants. Part I: Effect of Composition and Microstructure, Springer US, 2019. DOI: https://doi.org/10.1007/s11666-019-00938-1.

  4. A.V. Pinzón, K.J. Urrego, A. González-Hernández, M. Rincón Ortiz, and F. Vargas Galvis, Corrosion Protection of Carbon Steel by Alumina-Titania Ceramic Coatings Used for Industrial Applications, Ceram. Int., 2018, 44, p 21765–21773. https://doi.org/10.1016/j.ceramint.2018.08.273

    Article  CAS  Google Scholar 

  5. T. Lampke, D. Meyer, G. Alisch, D. Nickel, I. Scharf, L. Wagner, and U. Raab, Alumina Coatings Obtained by Thermal Spraying and Plasma Anodising - A Comparison, Surf. Coat. Technol., 2011, 206, p 2012–2016. https://doi.org/10.1016/j.surfcoat.2011.09.006

    Article  CAS  Google Scholar 

  6. J. Huang, Y. Liu, J. Yuan, and H. Li, Al/Al2O3 Composite Coating Deposited by Flame Spraying for Marine Applications: Alumina Skeleton Enhances Anti-corrosion and Wear Performances, J. Therm. Spray Technol., 2014, 23, p 676–683. https://doi.org/10.1007/s11666-014-0056-7

    Article  CAS  Google Scholar 

  7. S. Singh, C.C. Berndt, R.K. Singh Raman, H. Singh, and A.S.M. Ang, Applications and Developments of Thermal Spray Coatings for the Iron and Steel Industry, Materials (Basel)., 2023, 16, p 1–27. https://doi.org/10.3390/ma16020516

    Article  CAS  Google Scholar 

  8. S. Amin, H. Panchal, and A. Professor, A Review on Thermal Spray Coating Processes, Int. J. Curr. Trends Eng Res. Sci. J. Impact Factor., 2016, 2, p 556–563.

    Google Scholar 

  9. A. Woźniak, M. Staszuk, Ł Reimann, O. Bialas, Z. Brytan, S. Voinarovych, O. Kyslytsia, S. Kaliuzhnyi, M. Basiaga, and M. Admiak, The Influence of Plasma-Sprayed Coatings on Surface Properties and Corrosion Resistance of 316L Stainless Steel for Possible Implant Application, Arch. Civ. Mech. Eng., 2021, 21, p 1–21. https://doi.org/10.1007/s43452-021-00297-1

    Article  Google Scholar 

  10. S. Shen, X. Li, P. Zhang, Y. Nan, G. Yang, and X. Song, Effect of Solution-Treated Temperature on Hydrogen Embrittlement of 17-4 PH Stainless Steel, Mater. Sci. Eng. A, 2017, 703, p 413–421. https://doi.org/10.1016/j.msea.2017.06.078

    Article  CAS  Google Scholar 

  11. C.J. Li, X.T. Luo, X.Y. Dong, L. Zhang, and C.X. Li, Recent Research Advances in Plasma Spraying of Bulk-Like Dense Metal Coatings with Metallurgically Bonded Lamellae, J. Therm. Spray Technol., 2022, 31, p 5–27. https://doi.org/10.1007/s11666-022-01327-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. G. Sundararajan, D.S. Rao, G. Sivakumar, S. V Joshi, Detonation Spray Coatings, in: Q.J. Wang, Y.-W. Chung (Eds.), Encycl. Tribol., Springer US, Boston, MA, 2013: pp. 736–742. https://doi.org/10.1007/978-0-387-92897-5_704.

  13. L. Singh, V. Chawla, and J.S. Grewal, A Review on Detonation Gun Sprayed Coatings, J. Miner. Mater. Charact. Eng., 2012, 11, p 243–265. https://doi.org/10.4236/jmmce.2012.113019

    Article  Google Scholar 

  14. J. Mehta, J.S. Grewal, and P. Gupta, Analysis of D-gun Sprayed Coating on Medium Carbon Steel, Mater. Today Proc., 2020, 21, p 1403–1406. https://doi.org/10.1016/j.matpr.2019.07.699

    Article  CAS  Google Scholar 

  15. P. Vuoristo, 4.10 - Thermal Spray Coating Processes, in: S. Hashmi, G.F. Batalha, C.J. Van Tyne, B. Yilbas (Eds.), Compr. Mater. Process., Elsevier, Oxford, 2014: pp. 229–276. https://doi.org/10.1016/B978-0-08-096532-1.00407-6.

  16. P. Poza and M.Á. Garrido-Maneiro, Cold-Sprayed Coatings: Microstructure, Mechanical Properties, and Wear Behaviour, Prog. Mater. Sci., 2022 https://doi.org/10.1016/j.pmatsci.2021.100839

    Article  Google Scholar 

  17. X.T. Luo, C.X. Li, F.L. Shang, G.J. Yang, Y.Y. Wang, and C.J. Li, High Velocity Impact Induced Microstructure Evolution During Deposition of Cold Spray Coatings: A Review, Surf. Coat. Technol., 2014, 254, p 11–20. https://doi.org/10.1016/j.surfcoat.2014.06.006

    Article  CAS  Google Scholar 

  18. M. Saleh, V. Luzin, and K. Spencer, Analysis of the Residual Stress and Bonding Mechanism in the Cold Spray Technique Using Experimental and Numerical Methods, Surf. Coat. Technol., 2014, 252, p 15–28. https://doi.org/10.1016/j.surfcoat.2014.04.059

    Article  CAS  Google Scholar 

  19. A. Gupta, A. Pattnayak, N.V. Abhijith, D. Kumar, V. Chaudhry, and S. Mohan, Development of Alumina-Based Hybrid Composite Coatings for High Temperature Erosive and Corrosive Environments, Ceram. Int., 2022 https://doi.org/10.1016/j.ceramint.2022.09.059

    Article  Google Scholar 

  20. A. Gupta and D. Kumar, Development of Al2O3-based hybrid ceramic matrix composite coating to mitigate the erosive wear of advanced steel, Proc. Inst. Mech Eng. Part L J. Mater. Des. Appl., 2021, 235, p 752–762. https://doi.org/10.1177/1464420720978676

    Article  CAS  Google Scholar 

  21. N.V. Abhijith, D. Kumar, and D. Kalyansundaram, Development of Single-Stage TiNbMoMnFe High-Entropy Alloy Coating on 304L Stainless Steel Using HVOF Thermal Spray, J. Therm. Spray Technol., 2022, 31, p 1032–1044. https://doi.org/10.1007/s11666-021-01294-9

    Article  CAS  Google Scholar 

  22. M. Oksa, E. Turunen, T. Suhonen, T. Varis, and S.-P. Hannula, Optimization and Characterization of High Velocity Oxy-fuel Sprayed Coatings: Techniques, Mater. Appl. Coat., 2011, 1, p 17–52. https://doi.org/10.3390/coatings1010017

    Article  Google Scholar 

  23. M. Rani, G. Perumal, M. Roy, H.S. Grewal, H. Singh, and H.S. Arora, Post-processing of Ni-Cr-Al2O3 Thermal Spray Coatings Through Friction Stir Processing for Enhanced Erosion-Corrosion Performance, J. Therm. Spray Technol., 2019, 28, p 1466–1477. https://doi.org/10.1007/s11666-019-00891-z

    Article  CAS  Google Scholar 

  24. S. Kumar, D. Kumar, and J. Jain, Surface and Interface Characteristics of CeO2 Doped Al2O3 Coating on Solution Treated and Peak Aged AZ91 Mg Alloy, Surf. Coat. Technol., 2017, 332, p 511–521. https://doi.org/10.1016/j.surfcoat.2017.07.082

    Article  CAS  Google Scholar 

  25. S. Kumar and D. Kumar, Role of CeO2 Doping on Tribological Behavior of Al2O3 Coated AZ91 Alloy, Surf. Coat. Technol., 2018, 349, p 462–469. https://doi.org/10.1016/j.surfcoat.2018.06.025

    Article  CAS  Google Scholar 

  26. A. Gupta, A. Pattnayak, N.V. Abhijith, D. Kumar, V. Chaudhry, and S. Mohan, Development of Alumina-Based Hybrid Composite Coatings for High Temperature Erosive and Corrosive Environments, Ceram. Int., 2023, 49, p 862–874. https://doi.org/10.1016/j.ceramint.2022.09.059

    Article  CAS  Google Scholar 

  27. A. Srikanth and V. Bolleddu, High Velocity Oxy-Fuel (HVOF) Sprayed Coating Nanoarchitectonics: Influence of Reduced Graphene Oxide (rGO) on Tribological Characteristics, Appl. Phys. A Mater. Sci. Process., 2023 https://doi.org/10.1007/s00339-023-06607-z

    Article  Google Scholar 

  28. A. Srikanth and V. Bolleddu, Influence of Reduced Graphene Oxide (rGO) on Plasma Sprayed Nanostructured Coatings, J. Therm. Spray Technol., 2023, 32, p 1260–1272. https://doi.org/10.1007/s11666-023-01556-8

    Article  CAS  Google Scholar 

  29. V. Bolleddu, V. Racherla, and P.P. Bandyopadhyay, Comparative Study of Air Plasma Sprayed and High Velocity Oxy-Fuel Sprayed Nanostructured WC-17wt.% Co Coatings, Int. J. Adv. Manuf. Technol., 2016, 84, p 1601–1613. https://doi.org/10.1007/s00170-015-7824-5

    Article  Google Scholar 

  30. C. Kalangi and V. Bolleddu, Microstructural Characteristics and Mechanical Properties of Thermally Sprayed Conventional Ceramic Coatings Reinforced with Multiwalled Carbon Nanotubes, J. Reinf. Plast. Compos., 2022 https://doi.org/10.1177/07316844221099926

    Article  Google Scholar 

  31. G. Li, J. Wang, C. Li, Q. Peng, J. Gao, and B. Shen, Microstructure and dry-sliding wear properties of DC plasma nitrided 17-4 PH stainless steel, Nucl. Instruments Methods Phys Res. Sect. B Beam Interact. Mater. Atoms, 2008, 266, p 1964–1970. https://doi.org/10.1016/j.nimb.2008.02.073

    Article  CAS  Google Scholar 

  32. A. Pattnayak, A. Gupta, N.V. Abhijith, D. Kumar, J. Jain, and V. Chaudhry, Development of rGO Doped Alumina-Based Wear and Corrosion Resistant Ceramic Coatings on Steel Using HVOF Thermal Spray, Ceram. Int., 2023 https://doi.org/10.1016/j.ceramint.2023.02.124

    Article  Google Scholar 

  33. G. Bolelli and L. Lusvarghi, Heat Treatment Effects on the Tribological Performance of HVOF Sprayed Co-Mo-Cr-Si Coatings, Proc. Int. Therm. Spray Conf., 2006, 15, p 802–810. https://doi.org/10.1361/105996306X146721

    Article  CAS  Google Scholar 

  34. Y. Morisada, H. Fujii, T. Mizuno, G. Abe, T. Nagaoka, and M. Fukusumi, Modification of Thermally Sprayed Cemented Carbide Layer by Friction Stir Processing, Surf. Coat. Technol., 2010, 204, p 2459–2464. https://doi.org/10.1016/j.surfcoat.2010.01.021

    Article  CAS  Google Scholar 

  35. X.M. Meng, J.B. Zhang, W. Han, J. Zhao, and Y.L. Liang, Influence of Annealing Treatment on the Microstructure and Mechanical Performance of Cold Sprayed 304 Stainless Steel Coating, Appl. Surf. Sci., 2011, 258, p 700–704. https://doi.org/10.1016/j.apsusc.2011.07.107

    Article  CAS  Google Scholar 

  36. K.J. Hodder, H. Izadi, A.G. McDonald, and A.P. Gerlich, Fabrication of Aluminum-Alumina Metal Matrix Composites via Cold Gas Dynamic Spraying at Low Pressure Followed by Friction Stir Processing, Mater. Sci. Eng. A, 2012, 556, p 114–121. https://doi.org/10.1016/j.msea.2012.06.066

    Article  CAS  Google Scholar 

  37. C.D. Prasad, S. Joladarashi, M.R. Ramesh, M.S. Srinath, and B.H. Channabasappa, Influence of Microwave Hybrid Heating on the Sliding wear Behaviour of HVOF Sprayed CoMoCrSi Coating, Mater. Res. Express., 2018, 5, p 86519. https://doi.org/10.1088/2053-1591/aad44e

    Article  CAS  Google Scholar 

  38. R.R. Mishra and A.K. Sharma, Microwave-Material Interaction Phenomena: Heating Mechanisms, Challenges and Opportunities in Material Processing, Compos. Part A Appl. Sci. Manuf., 2016, 81, p 78–97. https://doi.org/10.1016/j.compositesa.2015.10.035

    Article  CAS  Google Scholar 

  39. W.Y. Li, C.J. Li, and H. Liao, Effect of Annealing Treatment on the Microstructure and Properties of Cold-Sprayed Cu Coating, J. Therm. Spray Technol., 2006, 15, p 206–211. https://doi.org/10.1361/105996306X108066

    Article  CAS  Google Scholar 

  40. H. Li, K.A. Khor, and P. Cheang, Properties of Heat-Treated Calcium Phosphate Coatings Deposited by High-Velocity Oxy-Fuel (HVOF) Spray, Biomaterials, 2002, 23, p 2105–2112. https://doi.org/10.1016/S0142-9612(01)00326-X

    Article  CAS  PubMed  Google Scholar 

  41. K. Wang, H. Peng, H. Guo, and S. Gong, Effect of Sintering on Thermal Conductivity and Thermal Barrier Effects of Thermal Barrier Coatings, Chin. J. Aeronaut., 2012, 25, p 811–816. https://doi.org/10.1016/S1000-9361(11)60449-4

    Article  CAS  Google Scholar 

  42. B. Siebert, C. Funke, R. Vaben, and D. Stöver, Changes in Porosity and Young’s Modulus Due to Sintering of Plasma Sprayed Thermal Barrier Coatings, J. Mater. Process. Technol., 1999, 92–93, p 217–223. https://doi.org/10.1016/S0924-0136(99)00243-5

    Article  Google Scholar 

  43. M.M. Verdian, Finishing and Post-treatment of Thermal Spray Coatings, Elsevier Ltd., 2017 https://doi.org/10.1016/B978-0-12-803581-8.09200-6

    Article  Google Scholar 

  44. R. Pötzl, Laser Remelting of HVOF Coatings, in: ASM Heat Treat. Surf. Eng. Conf. II, Trans Tech Publications Ltd, 1994: pp. 595–602. https://doi.org/10.4028/www.scientific.net/MSF.163-165.595.

  45. B.S. Yilbas, I.H. Toor, F. Patel, and M.A. Baig, Effects of Laser Re-melting on the Corrosion Properties of HVOF Coatings, J. Mater. Eng. Perform., 2013, 22, p 1505–1511. https://doi.org/10.1007/s11665-012-0428-4

    Article  CAS  Google Scholar 

  46. A. Coatings, M. Grimm, T. Lindner, T. Lampke, Effects of Laser-Remelting on the Microstructure , Hardness (2022).

  47. L. Chen, D. He, B. Han, Z. Guo, L. Zhang, L. Lu, X. Wang, Z. Tan, and Z. Zhou, Effect of Laser Remelting on Wear Behavior of hvof-Sprayed Fecrconitial 0.6 High Entropy Alloy Coating, Appl. Sci., 2020, 10, p 1–9. https://doi.org/10.3390/app10207211

    Article  CAS  Google Scholar 

  48. B. Das, A. Nath, and P.P. Bandyopadhyay, Scratch Resistance and Damage Mechanism of Laser Remelted Thermally Sprayed Ceramic Coating, Surf. Coat. Technol., 2019, 364, p 157–169. https://doi.org/10.1016/j.surfcoat.2019.02.078

    Article  CAS  Google Scholar 

  49. R. de Medeiros Castro, E.I. Mercado Curi, L.F. Feltrim Inacio, A. da Silva Rocha, M. Pereira, R. Gomes Nunes Silva, and A. de Souza Pinto Pereira, Laser Remelting of WC-CoCr Surface Coated by HVOF: Effect on the Tribological Properties and Energy Efficiency, Surf. Coat. Technol., 2021, 427, p 127841. https://doi.org/10.1016/j.surfcoat.2021.127841

    Article  CAS  Google Scholar 

  50. I.D. Utu and G. Marginean, Effect of Electron Beam Remelting on the Characteristics of HVOF Sprayed Al2O3-TiO2 Coatings Deposited on Titanium Substrate, Colloids Surfaces A Physicochem. Eng. Asp., 2017, 526, p 70–75. https://doi.org/10.1016/j.colsurfa.2016.10.034

    Article  CAS  Google Scholar 

  51. G. Marginean and D. Utu, Cyclic Oxidation Behaviour of Different Treated CoNiCrAlY Coatings, Appl. Surf. Sci., 2012, 258, p 8307–8311. https://doi.org/10.1016/j.apsusc.2012.05.050

    Article  CAS  Google Scholar 

  52. G. Li, Y. Li, T. Dong, H. Wang, X. Zheng, and X. Zhou, Microstructure and Wear Resistance of TIG Remelted NiCrBSi Thick Coatings, Adv. Mater. Sci. Eng., 2018, 2018, p 1–10. https://doi.org/10.1155/2018/8979678

    Article  CAS  Google Scholar 

  53. F. Ghadami, M. Heydarzadeh Sohi, and S. Ghadami, Effect of TIG Surface Melting on Structure and Wear Properties of Air Plasma-Sprayed WC-Co Coatings, Surf. Coat. Technol., 2015, 261, p 108–113. https://doi.org/10.1016/j.surfcoat.2014.11.050

    Article  CAS  Google Scholar 

  54. A. Pattnayak, N.V. Abhijith, D. Kumar, J. Jain, and V. Chaudhry, Tribological and Corrosive Degradation of Differently Surface Engineered 17–4 PH Steel, Tribol. Int., 2024, 192, p 109294. https://doi.org/10.1016/j.triboint.2024.109294

    Article  CAS  Google Scholar 

  55. H. Wu, F. Dave, M. Mokhtari, M.M. Ali, R. Sherlock, A. McIlhagger, D. Tormey, and S. McFadden, On the Application of Vickers Micro Hardness Testing to Isotactic Polypropylene, Polymers (Basel)., 2022 https://doi.org/10.3390/polym14091804

    Article  PubMed  PubMed Central  Google Scholar 

  56. Nanovea, Scratch Hardness Measurement Using Mechanical Tester (2014). https://doi.org/10.13140/RG.2.1.3120.0164.

  57. S. Krainer and U. Hirn, Contact Angle Measurement on Porous Substrates: Effect of Liquid Absorption and Drop Size, Colloids Surfaces A Physicochem. Eng. Asp., 2021, 619, p 126503. https://doi.org/10.1016/j.colsurfa.2021.126503

    Article  CAS  Google Scholar 

  58. A. Shalaby, V. Yaneva, A. Staneva, L. Aleksandrov, R. Iordanova, Y. Dimitriev, Thermal Stability of RGO and RGO/SiO2 Nanocomposite Prepared by Sol-Gel Technique, Researchgate.Net. (2014). https://www.researchgate.net/profile/Ahmed_Shalaby17/post/How_does_graphene_behave_when_heated_fast_and_cooled_down_fast/attachment/59d61de779197b807797c254/AS%3A273842201661441%401442300476938/download/THERMAL+STABILITY+OF+RGO+AND+RGOSiO2+2014.pdf.

  59. S.D. Zhang, J. Wu, W.B. Qi, and J.Q. Wang, Effect of Porosity Defects on the Long-Term Corrosion Behaviour of Fe-Based Amorphous Alloy Coated Mild Steel, Corros. Sci., 2016, 110, p 57–70. https://doi.org/10.1016/j.corsci.2016.04.021

    Article  CAS  Google Scholar 

  60. N. Basavegowda, K. Mishra, and Y.R. Lee, Synthesis, Characterization, and Catalytic Applications of Hematite (α-Fe2O3) Nanoparticles as Reusable Nanocatalyst, Adv. Nat. Sci. Nanosci. Nanotechnol., 2017 https://doi.org/10.1088/2043-6254/aa6885

    Article  Google Scholar 

  61. A.S. Hamdy, E. El-Shenaw, and T. El-Bitar, Electrochemical Impedance Spectroscopy Study of the Corrosion Behavior of Some Niobium Bearing Stainless Steels in 3.5% NaCl, Int. J. Electrochem. Sci., 2006, 1, p 171–180. https://doi.org/10.1016/s1452-3981(23)17147-1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the technical staff of the Centre for Automotive Research and Tribology (CART), SERB DST, Nano Research Facility (NRF), and Central Research Facility (CRF) of the Indian Institute of Technology Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Kumar.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pattnayak, A., Kumar, D. High Velocity Oxy-Fuel Thermally Sprayed rGO Reinforced Alumina-Based Coatings on 17-4 PH Steel: Exploring the Effect of Flame Heat Treatment. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09515-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09515-2

Keywords

Navigation