Skip to main content

Advertisement

Log in

Modeling the hydrogen-induced cracking of titanium alloys in nuclear waste repository environments

  • Overview
  • HigH-Radiation Nuclear Waste Disposal
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This article considers hydrogen-induced cracking of titanium grade 7 and other relevant titanium alloys in the current waste package design for the environmental conditions anticipated within the proposed Yucca Mountain nuclear waste repository in Nevada. In particular, corrosion processes possible in the aqueous environments expected within this site are considered, including key corrosion processes that could occur and the expected corrosion performance of these alloys. It can be concluded that, based on the conservative modeling approaches adopted, hydrogen-induced cracking of titanium alloys will not occur under nuclear waste repository conditions since there will not be sufficient hydrogen in the alloy even after 10,000 years of emplacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. “Nuclear Waste Policy Amendments Act of 1987,” Public Law No. 100–203, 101 Stat. 1330.

  2. Yucca Mountain Science and Engineering Report, DOE/RW-0539, Rev. 1 (Washington, D.C.: U.S. Department of Energy, 2002).

  3. J. Farmer et al., “General and Localized Corrosion of Outer Barrier of High-Level Waste Container in Yucca Mountain” (Paper presented at the ASME/PVP Conference, Seattle, Washington, 23–27 July 2000).

  4. P.L. Andresen et al., “Stress Corrosion Cracking of Annealed and Cold Worked Titanium Grade 7 and Alloy 22 in 110°C Concentrated Salt Environments,” Corrosion 2001, Paper No. 01130 (Houston, TX: NACE, 2001).

    Google Scholar 

  5. D.S. Dunn, Y.M. Pan, and G.A. Cragnolino, “Stress Corrosion Cracking, Passive, and Localized Corrosion of Alloy 22 High Level Radioactive Waste Containers,” Corrosion 2000, Paper No. 00206 (Houston, TX: NACE, 2001).

    Google Scholar 

  6. A. Roy and D. Flemming, “Galvanic Corrosion—Effect of Environmental and Experimental Variables,” Corrosion 1999, Paper No. 465 (Houston, TX: NACE, 1999).

    Google Scholar 

  7. A. Roy and D. Flemming, “Galvanic Corrosion Study of Container Materials Using Zero Resistance Ammeter,” Corrosion 1998, Paper No. 156 (Houston, TX: NACE, 1998).

    Google Scholar 

  8. T. Lian et al., “Corrosion of Candidate Container Materials by Yucca Mountain Bacteria,” Corrosion 1999, Paper No. 476 (Houston, TX: NACE, 1999).

    Google Scholar 

  9. J. Horn et al., “Biochemical Contributions to Corrosion of Carbon Steel and Alloy 22 in a Continual Flow System,” Corrosion 1999, Paper No. 162 (Houston, TX: NACE, 1999).

    Google Scholar 

  10. J. Horn et al., “Potential Biogenic Corrosion of Alloy 22, A Candidate Nuclear Waste Packaging Material, Under Simulated Repository Conditions,” Corrosion 2000, Paper No. 00387 (Houston, TX: NACE, 2000).

    Google Scholar 

  11. F. Hua and G. Gordon, “Corrosion Behavior of Alloy 22 and Ti Grade 7 in a Nuclear Waste Repository Environment,” Corrosion, 60 (8) (2004), pp. 764–777.

    CAS  Google Scholar 

  12. F. Hua et al., “General Corrosion Studies of Candidate Container Materials in Environments Relevant to Nuclear Waste Repository,” Corrosion/2002, Paper No. 02530 (Houston, TX: NACE, 2000).

    Google Scholar 

  13. F. Hua and G. Gordon, “On Apparent Bi-Linear Corrosion Rate Behavior of Ti Grade 7 in Basic Saturated Water (BSW-12) Below and Above 80°C,” Corrosion 2003, Paper No. 03687 (Houston, TX: NACE, 2003).

    Google Scholar 

  14. “NWTRB 2001: International Workshop on Long-Term Extrapolation of Passive Behavior” (U.S. Nuclear Waste Technical Review Board, Arlington, VA, 19–20 July 2001).

  15. ASTM B 265-02—Standard Specification for Titanium and Titanium Alloy Strip, Sheet, and Plate (West Conshohocken, PA: American Society for Testing and Materials, 2002); ASTM B 265-99—Standard Specification for Titanium and Titanium Alloy Strip, Sheet, and Plate (West Conshohocken, PA: American Society for Testing and Materials, 1999).

  16. H.H. Uhlig, The Corrosion Handbook (Hoboken, NJ: Wiley, John & Sons, 1948), pp. 1144–1145.

    Google Scholar 

  17. R.W. Schutz, “2003 F.N. Speller Award Lecture: Platinum Group Metal Additions to Titanium: A Highly Effective Strategy for Enhancing Corrosion Resistance,” Corrosion, 59 (12) (2003), pp. 1043–1057.

    Article  CAS  Google Scholar 

  18. D.W. Shoesmith et al., Hydrogen Absorption and the Lifetime Performance of Titanium Waste Containers. AECL-11770 (Pinawa, Manitoba, Canada: Atomic Energy of Canada Limited, 1997).

    Google Scholar 

  19. R.W. Schutz and D.E. Thomas, “Corrosion of Titanium and Titanium Alloys,” Corrosion, Volume 13, ASM Handbook (Materials Park, OH: American Society for Materials, 1987).

    Google Scholar 

  20. T. Murai, M. Ishikawa, and C. Miura, “The Absorption of Hydrogen into Titanium Under Cathodic Polarization,” Corrosion Engineering, 26 (4) (1977), pp. 177–183.

    CAS  Google Scholar 

  21. T.R. Beck, “Pitting of Titanium. I. Titanium Foil Experiments,” J. Electrochem. Soc., 120 (1973), pp. 1310–1324.

    Article  CAS  Google Scholar 

  22. T.R. Beck, “Pitting of Titanium. II. One-Dimensional Pit Experiments,” J. Electrochem. Soc., 120 (1973), pp. 1317–1324.

    Article  CAS  Google Scholar 

  23. Z. Tun, J.J. Noël, and D.W. Shoesmith, “Electrochemical Modification of the Passive Oxide Layer on a Ti Film Observed by In Situ Neutron Reflectometry,” Journal of The Electrochemical Society, 146 (3) (1999), pp. 988–994.

    Article  CAS  Google Scholar 

  24. S.-I. Pyun and Y.-G. Yoon, “Hydrogen Transport Through TiO2 Film Prepared by Plasma Enhanced Chemical Vapour Deposition (PECVD) Method,” Hydrogen Effects in Materials, ed. A.W. Thompson and N.R. Moody (Warrendale, PA: TMS, 1996), pp. 261–269.

    Google Scholar 

  25. J.J. Noël et al., Hydrogen Absorption by Grade-2 Titanium. AECL-11608 (Pinawa, Manitoba, Canada: Atomic Energy of Canada Limited, Whiteshell Laboratories, 1996).

    Google Scholar 

  26. R. Greef et al., “Electrocatalysis,” Chapter 7 of Instrumental Methods in Electrochemistry (Chinchester, England: Ellis Horwood Ltd., 1985).

    Google Scholar 

  27. R.W. Schutz and M. Xiao, “Optimized Lean-Pd Titanium Alloys for Aggressive Reducing Acid and Halide Service Environments,” Corrosion Control for Low-Cost Reliability (Houston, Texas: NACE International, 1993), pp. 1213–1225.

    Google Scholar 

  28. T. Fukuzuka, K. Shimogori, and H. Satoh, “Role of Palladium in Hydrogen Absorption of Ti-Pd Alloy,” Titanium ’80, Science and Technology: Proceedings of the Fourth International Conference on Titanium, (Warrendale, PA: TMS, 1980), pp. 2695–2703.

    Google Scholar 

  29. T. Takekawa, Data for Japanese Society of Titanium (October 15, 1973).

  30. A. Takamura and T. Yamagata, Titanium, Zirconium, 15 (8) (1967), p. 192.

    CAS  Google Scholar 

  31. R.S. Glass, “Effect of Intermetallic Ti2Ni on the Electrochemistry of TiCode-12 in Hydrochloric Acid,” Electrochimica Acta, 28, (11) (1983), pp. 1507–1513.

    Article  CAS  Google Scholar 

  32. T. Okada, “Factors Influencing the Cathodic Charging Efficiency of Hydrogen by Modified Titanium Electrodes,” Electrochimica Acta, 28, (8) (1983), pp. 1113–1120.

    Article  CAS  Google Scholar 

  33. T. Watanabe, T. Shindo, and H. Naito, “Effect of Iron Content on the Breakdown Potential for Pitting of Titanium in NaCl Solutions,” Sixth World Conference on Titanium, Vol. IV ed. P. Lacombe, R. Tricot, and G. Beranger (Cedex, France: Les Editions de Physique, 1988), pp. 1735–1740.

    Google Scholar 

  34. J.B. Cotton, “Using Titanium in the Chemical Plant,” Chemical Engineering Progress, 66 (10) (1970), pp. 57–62.

    CAS  Google Scholar 

  35. L.C. Covington and R.W. Schutz, “Effects of Iron on the Corrosion Resistance of Titanium,” Industrial Applications of Titanium and Zirconium, ASTM Special Technical Publication 728, ed. E.W. Kleefisch (West Conshohocken, PA: ASTM, 1994), pp. 163–180.

    Google Scholar 

  36. R.W. Schutz, “Performance and Application of Titanium Alloys in Geothermal Brine Service,” Materials Performance (Houston, TX: NACE International, 1985), pp. 39–47.

    Google Scholar 

  37. B.M. Ikeda et al., “The Effect of Material Purity on Crevice Corrosion of Titanium in NaCl Solution.” Proceedings of the Symposium on Compatibility of Biomedical Implants, Vol. 94-14 ed. P. Kovacs and N.S. Istephanous (Pennington, NJ: The Electrochemical Society, 1994), pp. 368–380.

    Google Scholar 

  38. J.B.C. Wu, “Effect of Iron Content on Hydrogen Absorption and Passivity Breakdown of Commercially Pure Titanium in Aqueous Solutions.” Titanium, Science and Technology, vol. 4 ed. G. Lutjering, U. Zwickler, and W. Bunk (Oberursel, Germany: Deutsche Gesellschaft fur Metallkunde, 1985), pp. 2595–2602.

    Google Scholar 

  39. R.W. Schutz, J.S. Grauman, and J.A. Hall, “Effect of Solid Solution Iron on the Corrosion Behaviour of Titanium,” Titanium, Science and Technology, vol. 4 ed. G. Lutjering, U. Zwickler, and W. Bunk (Oberursel, Germany: Deutsche Gesellschaft fur Metallkunde, 1985), pp. 2617–2624.

    Google Scholar 

  40. B.M. Ikeda and M.J. Quinn, A Preliminary Examination of the Effects of Hydrogen on the Behaviour of Grade-16 Titanium at Room Temperature, 06819-REP-01200-0078-R00 (Toronto, Ontario, Canada: Ontario Hydro, 1998).

    Google Scholar 

  41. D.W. Shoesmith et al., “Application of Electrochemical Methods in the Development of Models for Fuel Dissolution and Container Corrosion Under Nuclear Waste Disposal Conditions,” Canadian Journal of Chemistry, 75 (11) (1997), pp. 1566–1584.

    Article  CAS  Google Scholar 

  42. J.J. Noël, “The Electrochemistry of Titanium Corrosion” (Ph.D. dissertation, Winnipeg, Manitoba, Canada: University of Manitoba, 1999).

    Google Scholar 

  43. J.A. Hall, D. Banerjee, and T.L. Wardlaw, “The Relationships of Structure and Corrosion Behavior of Ti-0.3Mo-0.8Ni (TiCode-12),” Titanium, Science and Technology: Proceedings of the Fifth International Conference on Titanium, vol. 4 ed. G. Lutjering, U. Zwicker, and W. Bunk (Oberursel, Germany: Deutsche Gesellschaft für Metallkunde, 1985), pp. 2603–2610.

    Google Scholar 

  44. H. Tomari et al., “Hydrogen Absorption of Titanium for Nuclear Waste Container in Reducing Condition,” Zairyo-to-Kankyo, 48 (1999), pp. 807–814.

    CAS  Google Scholar 

  45. Y.J. Kim and R.A. Oriani, “Brine Radiolysis and its Effect on the Corrosion of Grade-12 Titanium,” Corrosion, 43 (1987), pp. 92–97.

    CAS  Google Scholar 

  46. Y.J. Kim and R.A. Oriani, “Corrosion Properties of the Oxide Film Formed on Grade-12 Titanium in Brine Under Gamma Radiation,” Corrosion, 43 (1987), pp. 85–91.

    CAS  Google Scholar 

  47. L.C. Covington, “The Influence of Surface Condition and Environment on the Hydriding of Titanium,” Corrosion, 35 (8) (1979), pp. 378–382.

    CAS  Google Scholar 

  48. K. Shimogori, H. Satoh, and F. Kamikubo, “Investigation of Hydrogen Absorption-Embrittlement of Titanium Used in the Actual Equipment,” Titanium, Science and Technology, Proceedings of the Fifth International Conference on Titanium, vol. 2 ed. G. Lütjering, U. Zwicker, and W. Bunk (Oberursel, Germany: Deutsche Gesellschaft fur Metallkunde, 1985), pp. 1111–1118.

    Google Scholar 

  49. R.W. Schutz, “Recent Titanium Alloy and Product Developments for Corrosive Industrial Service,” Corrosion 95, Paper No. 244, 244/1-244/20 (Houston, TX: NACE, 1005).

    Google Scholar 

  50. General Corrosion and Localized Corrosion of the Drip Shield. ANL-EBS-MD-000004, Rev. 02 (Las Vegas, NV: Bechtel SAIC Company, 2004).

  51. D.A. Shifler, D. Melton, and H.P. Hack, “New Techniques for Galvanic Corrosion Prevention in Piping Systems,” Proceedings of the 1997 Tri-Service Conference on Corrosion (Wrightsville Beach, North Carolina: Naval Surface Warfare Center-Carderock Division, 1997), pp. 1–22.

    Google Scholar 

  52. T.-P. Cheng, J.-T. Lee, and W.-T. Tsai. “Galvanic Corrosion of Titanium-Coupled Aluminum Bronze,” Materials Chemistry and Physics, 36 (1993), pp. 156–160.

    Article  CAS  Google Scholar 

  53. L. Lunde and R. Nyborg, “Hydrogen Absorption of Titanium Alloys During Cathodic Polarization,” Paper No. 5. (Houston, Texas: National Association of Corrosion Engineers, 1995), TIC: 248523.

    Google Scholar 

  54. T. Hodgkiess, A. Maciver, and P.Y. Chong, “Galvanic Studies Related to the Use in Desalination Plant of Corrosion-Resistant Materials,” Desalination, 66 (1987), pp. 147–170.

    Article  CAS  Google Scholar 

  55. C.F. Clarke, D. Hardie, and B.M. Ikeda, “The Effect of Hydrogen Content on the Fracture of Pre-Cracked Titanium Specimens,” Corrosion Science, 36 (3) (1994), pp. 487–509.

    Article  CAS  Google Scholar 

  56. C.F. Clarke, D. Hardie, and B.M. Ikeda, “The Effect of Hydrogen Content on the Fracture of Pre-Cracked Titanium Specimens,” Corrosion Science, 36 (3) (1994), pp. 487–509.

    Article  CAS  Google Scholar 

  57. C.F. Clarke, D. Hardie, and B.M. Ikeda, Hydrogen Induced Cracking of Grade-2 Titanium, AECL-11284 (Pinawa, Manitoba, Canada: Whiteshell Laboratories, 1995).

    Google Scholar 

  58. C.F. Clarke, D. Hardie, and B.M. Ikeda, “Hydrogen-Induced Cracking of Commercial Purity Titanium,” Corrosion Science, 39 (9) (1997), pp. 1545–1559.

    Article  CAS  Google Scholar 

  59. D.W. Shoesmith et al., A Model for Predicting the Lifetimes of Grade-2 Titanium Nuclear Waste Containers, AECL-10973 (Pinawa, Manitoba, Canada: Atomic Energy of Canada Limited, 1995).

    Google Scholar 

  60. B.M. Ikeda and M.J. Quinn, Hydrogen Assisted Cracking of Grade-16 Titanium: A Preliminary Examination of Behaviour at Room Temperature, 06819-REP-01200-0039 R00 (Toronto, Ontario, Canada: Ontario Hydro, 1998).

    Google Scholar 

  61. Hydrogen-Induced Cracking of Drip Shield, ANL-EBS-MD-000006, Rev. 02 (Las Vegas, NV: Bechtel SAIC Company, 2004).

  62. C.A. Greene et al., “Evaluation of the Possible Susceptibility of Titanium Grade 7 to Hydrogen Embrittlement in a Geologic Repository Environment,” Mat. Res. Soc. Symp. Proc. 663 (Warrendale, PA: MRS, 2001), pp. 515–523.

    Google Scholar 

  63. B.M. Ikeda et al., “The Hydrogen-Induced Cracking and Hydrogen Absorption Behaviour of Grade-16 Titanium,” Environmentally Induced Cracking of Metals, Proceedings of the International Symposium, ed. M. Elboujdaini, E. Ghali, and W. Zheng (Quebec, Canada: Canadian Institute of Mining, Metallurgy, and Petroleum, 2000), pp. 235–248.

    Google Scholar 

  64. S. Kitayama et al., “Effect of Small Pd Addition on the Corrosion Resistance of Tl and Tl Alloys in Severe Gas and Oil Environment,” Corrosion 92, Paper No. 52 (Houston, TX: NACE, 1992).

    Google Scholar 

  65. D. Hardie and S. Ouyang, “Effect of Hydrogen and Strain Rate Upon the Ductility of Mill-Annealed Ti6Al4V,” Corrosion Science, 41 (1) (1999), pp. 155–177.

    Article  CAS  Google Scholar 

  66. R.C. Weast, editor, CRC Handbook of Chemistry and Physics, 66th Edition (Boca Raton, FL: CRC Press, 1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For more information, contact Fred Hua, Bechtel SAIC Company, LLC, 1180 Town Center Drive, Las Vegas, NV 89144; e-mail Fred_Hua@ymp.gov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hua, F., Pasupathi, P., Mon, K. et al. Modeling the hydrogen-induced cracking of titanium alloys in nuclear waste repository environments. JOM 57, 20–26 (2005). https://doi.org/10.1007/s11837-005-0059-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-005-0059-4

Keywords

Navigation