Skip to main content
Log in

Corrosion Resistance of Sintered Commercially Pure Titanium in Inorganic Acids after Oxidation and Nitriding

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The corrosion resistance of oxidized and nitrided commercially pure titanium obtained by sintering of powders of titanium, titanium hydride and their mixtures was evaluated in 20% aqueous solution of hydrochloric acid and 40% aqueous solution of sulfuric acid. It was determined that surface oxide film decreased the corrosion rate by three orders of magnitude for titanium obtained by powder metallurgy, and by one order for titanium obtained by deformation technology. In the absence of a surface film at oxidation of the sintered titanium, the corrosion rate decreased by 1–2 orders of magnitude compared to untreated titanium. It was shown that stage nitriding led to decrease in corrosion rate by 3–4 orders of magnitude for titanium obtained by both technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. V.V. Savich, Powder Metall. Met. Ceram. 52, 632 (2014).

    Article  Google Scholar 

  2. F.H. Froes and D. Eylon, Int. Mater. Rev. 35, 162 (1990).

    Article  Google Scholar 

  3. O.M. Ivasishin, A.N. Demidik, and D.G. Savvakin, Titanium`95: Science and Technology, ed. P.A. Blenkinsop, W.J. Evans, and H.M. Flower (Cambridge: Cambridge University Press, 1996), pp. 440–447.

    Google Scholar 

  4. O.M. Ivasishin, V. Anokhin, A. Demidik, and D.G. Savvakin, Key Eng. Mater. 188, 55 (2000).

    Article  Google Scholar 

  5. V.S. Moxson, O.N. Senkov, and F.H. Froes, JOM 52, 24 (2000).

    Article  Google Scholar 

  6. F.H. Froes, S.J. Mashl, V.S. Moxson, J.C. Hebeisen, and V.A. Duz, JOM 56, 46 (2004).

    Article  Google Scholar 

  7. V. Amogo, L. Reig, D.J. Busquest, J.L. Ortiz, and J.A. Calero, et al., Powder Metall. 54, 67 (2011).

    Article  Google Scholar 

  8. M.A. Imam and F.H. Froes, Proceedings of the 12th World Conference on Titanium, ed. L. Zhou, H. Chang, Y. Lu, and D. Xu (Beijing: The Nonferrous Metals Society of China, 2012), pp. 2223–2226.

    Google Scholar 

  9. O. Ivasishin, V. Moxson, M. Qian, and H. Froes, Titanium Powder Metallurgy: Science, Technology and Applications, ed. Q. Ma and F.H. Froes (London: Butterworth-Heinemann, 2015), pp. 117–148.

    Chapter  Google Scholar 

  10. Q. Peng, B. Yang, and B. Friedrich, JMEPEG 27, 228 (2018).

    Article  Google Scholar 

  11. I.M. Pohrelyuk, O.V. Ovchynnykov, A.A. Skrebtsov, B.P. Bakhmatyuk, and KhS Shvachko, Mater. Sci. 52, 246 (2016).

    Article  Google Scholar 

  12. I.M. Pogrelyuk, O.V. Ovchynnykov, A.A. Skrebtsov, and K.S. Shvachko, Powder Metall. Met. Ceram. 55, 445 (2016).

    Article  Google Scholar 

  13. I.M. Pohrelyuk, O.V. Ovchynnykov, A.A. Skrebtsov, K.S. Shvachko, R.V. Proskurnyak, and S.M. Lavrys, Mater. Sci. (2017). https://doi.org/10.1007/s11003-017-0012-z.

    Article  Google Scholar 

  14. O.M. Ivasishin, D. Eylon, V.I. Bondarchuk, and D.G. Savvakin, Defect Diffus. Forum 277, 177 (2008).

    Article  Google Scholar 

  15. D.H. Savvakin, M.M. Humenyak, M.V. Matviichuk, and O.H. Molyar, Mater. Sci. 47, 651 (2012).

    Article  Google Scholar 

  16. A.C. Fernandes, F. Vaz, E. Ariza, L.A. Rocha, A.R.L. Ribeiro, A.C. Vieira, J.P. Rivière, and L. Pichon, Surf. Coat. Technol. 200, 6218 (2006).

    Article  Google Scholar 

  17. Y. Luo and S. Ge, Tribol. Int. 42, 1373 (2009).

    Article  Google Scholar 

  18. A.B. Panda, P. Laha, K. Harish, B. Sarkar, S.V. Chaure, W.A. Sayyad, V.S. Jadhav, G.R. Kulkarni, D. Sasmal, P.K. Barhai, A.K. Das, S.K. Mahapatra, and I. Banerjee, Surf. Coat. Technol. 205, 1611 (2010).

    Article  Google Scholar 

  19. E. Galvanetto, F.P. Galliano, A. Fossati, and F. Borgioli, Corros. Sci. 44, 1593 (2002).

    Article  Google Scholar 

  20. A. Fossati, F. Borgioli, E. Galvanetto, and T. Bacci, Corros. Sci. 46, 917 (2004).

    Article  Google Scholar 

  21. RSh Razavi, M. Salehi, M. Ramazani, and H.C. Man, Corros. Sci. 51, 2324 (2009).

    Article  Google Scholar 

  22. V.M.C.A. Oliveira, C. Aguiar, A.M. Vazquez, A. Robin, and M.J.R. Barboza, Corros. Sci. 88, 317 (2014).

    Article  Google Scholar 

  23. S.V. Huryn, I.N. Pohrelyuk, and V.N. Fedirko, Met. Sci. Heat Treat. 56, 24 (2014).

    Article  Google Scholar 

  24. E. Rolinski, eds., Nitriding of Titanium Alloys, ASM Handbook 4E (621: Materials Park, 2016), pp. 604–621.

    Google Scholar 

  25. A. Bloyce, P.H. Morton, and T. Bell, ASM Handbook, Vol. 5 (Ohio: Materials Park, 1994), p. 1056.

    Google Scholar 

  26. I. Pohrelyuk and V. Fedirko, Chemico-thermal treatment of titanium alloys—nitriding.Titanium Alloys—Towards Achieving Enhanced Properties for Diversified Applications, ed. A.K.M. Nurul Amin (Rijeka: InTech, 2012), p. 228.

    Google Scholar 

  27. H. Güleryüz and H. Çimenoğlu, Biomaterials 25, 3325 (2004).

    Article  Google Scholar 

  28. K. Kimura and T. Katayama, Report No. 106, Nippon Steel and Sumitomo Metal Technical (2014).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Pohrelyuk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pohrelyuk, I.M., Luk’yanenko, A.G., Tkachuk, O.V. et al. Corrosion Resistance of Sintered Commercially Pure Titanium in Inorganic Acids after Oxidation and Nitriding. JOM 71, 4910–4916 (2019). https://doi.org/10.1007/s11837-019-03793-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03793-1

Navigation