Skip to main content

Advertisement

Log in

Fabrication and characterization of porous Ti–4Mo alloy for biomedical applications

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Porous Ti–4Mo alloy was prepared by indirect selective laser sintering and investigated with focuses on its porous structure, microstructural characteristic, mechanical properties and corrosion behavior. The results indicate that as the porous alloy is sintered from 1000 to 1200 °C, the pore morphology changes gradually from interconnected to closed pores, meanwhile the porosity level and pore size reduce in the ranges 54–20 % and 103–35 μm, respectively. A laminar microstructure composed of dominant α and minor β phases is observed in pore walls together with slight α precipitations. Elastic modulus and yield strength increase with decreased porosity in the ranges 2.56–10.8 GPa and 47.0–162.4 MPa, respectively. The relationship between the relative mechanical properties and relative density obeys a power law relation. All the polarization curves exhibit an obvious passive characteristic despite different pore features, and the passive film could protect the porous alloy against corrosion in simulated body fluids. Overall, the porous Ti–4Mo alloy may be a potential candidate material for biomedical implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Prog. Mater. Sci. 54, 397 (2009)

    Article  CAS  Google Scholar 

  2. T.K. Jung, S. Semboshi, N. Masahashi, S. Hanada, Mater. Sci. Eng. C 33, 1629 (2013)

    Article  CAS  Google Scholar 

  3. E. Delvat, D.M. Gordin, T. Glorianta, J.L. Duval, M.D. Nagel, J. Mech. Behav. Biomed. Mater. 1, 345 (2008)

    Article  CAS  Google Scholar 

  4. T. Lee, Y.U. Heo, C.S. Lee, Scr. Mater. 69, 785 (2013)

    Article  CAS  Google Scholar 

  5. S.J. Dai, Y. Wang, F. Chen, Mater. Charact. 104, 16 (2015)

    Article  CAS  Google Scholar 

  6. L.H. de Almeida, I.N. Bastos, I.D. Santos, A.J.B. Dutra, C.A. Nunes, S.B. Gabriel, J. Alloy. Compd. 615, S666 (2014)

    Article  Google Scholar 

  7. S. Kumar, T.S. Narayanan, J. Dent. 36, 500 (2008)

    Article  CAS  Google Scholar 

  8. G. Bolat, D. Mareci, R. Chelariu, J. Izquierdo, S. González, S.M. Souto, Electrochim. Acta 113, 470 (2013)

    Article  CAS  Google Scholar 

  9. Y.L. Zhou, D.M. Luo, J. Alloy. Compd. 509, 6267 (2011)

    Article  CAS  Google Scholar 

  10. S. Kumar, T.S. Narayanan, J. Appl. Electrochem. 41, 123 (2011)

    Article  CAS  Google Scholar 

  11. A. Mazzoli, Med. Biol. Eng. Comput. 51, 245 (2013)

    Article  Google Scholar 

  12. C.H. Chen, M.Y. Lee, V.B.H. Shyu, Y.C. Chen, C.T. Chen, J.P. Chen, Mater. Sci. Eng. C 40, 389 (2014)

    Article  CAS  Google Scholar 

  13. C.J. Shuai, Z.Z. Mao, Z.K. Han, S.P. Peng, J. Bioact. Compat. Pol. 29, 110 (2014)

    Article  CAS  Google Scholar 

  14. J.H. Zhou, C.D. Gao, P. Feng, T. Xiao, C.J. Shuai, S.P. Peng, J. Porous Mater. 22, 1171 (2015)

    Article  CAS  Google Scholar 

  15. S.L. de Assis, S. Wolynec, I. Costa, Electrochim. Acta 51, 1815 (2006)

    Article  Google Scholar 

  16. I. Gurappa, Mater. Charact. 49, 73 (2002)

    Article  CAS  Google Scholar 

  17. O. Zinger, K. Anselme, A. Denzer, P. Habersetzer, M. Wieland, J. Jeanfils, P. Hardouin, D. Landolt, Biomaterials 25, 2695 (2004)

    Article  CAS  Google Scholar 

  18. S.F. Hulbert, F.A. Young, R.S. Mathews, J.J. Klawitter, C.D. Talbert, F.H. Stelling, J. Biomed. Mater. Res. 4, 433 (1970)

    Article  CAS  Google Scholar 

  19. J.G. Li, H.H. Liao, B. Fartash, L. Hermansson, T. Johnsson, Biomaterials 18, 691 (1997)

    Article  CAS  Google Scholar 

  20. H.E. Götz, M. Müller, A. Emmel, U. Holzwarth, R.G. Erben, R. Stangl, Biomaterials 25, 4057 (2004)

    Article  Google Scholar 

  21. A.I. Itälä, H.O. Ylänen, C. Ekholm, K.H. Karlsson, H.T. Aro, J. Biomed. Mater. Res. 58, 679 (2001)

    Article  Google Scholar 

  22. V. Karageorgiou, D. Kaplan, Biomaterials 26, 5474 (2005)

    Article  CAS  Google Scholar 

  23. B.V. Krishna, S. Bose, A. Bandyopadhyay, Acta Biomater. 3, 997 (2007)

    Article  CAS  Google Scholar 

  24. P.E.L. Moraes, R.J. Contieri, E.S.N. Lopes, Mater. Charact. 96, 273 (2014)

    Article  CAS  Google Scholar 

  25. X.H. Min, K. Tsuzaki, S. Emura, T. Nishimura, K. Tsuchiya, Mater. Trans. 52, 1611 (2011)

    Article  CAS  Google Scholar 

  26. Y. Liu, L.F. Chen, H.P. Tang, C.T. Liu, B. Liu, B.Y. Huang, Mater. Sci. Eng. A 418, 25 (2006)

    Article  Google Scholar 

  27. F.G. Evans, Artif. Limbs 13, 37 (1969)

    CAS  Google Scholar 

  28. L. Zhang, Y.Q. Zhang, Y.H. Jiang, R. Zhou, Vacuum 122, 187 (2015)

    Article  CAS  Google Scholar 

  29. Y.H. Li, R.B. Chen, G.X. Qi, Z.T. Wang, Z.Y. Deng, J. Alloy. Compd. 485, 215 (2009)

    Article  CAS  Google Scholar 

  30. Y. Bao, M. Zhang, Y. Liu, J.J. Yao, Z.M. Xiu, M. Xie, X.D. Sun, J. Porous Mater. 21, 913 (2014)

    Article  Google Scholar 

  31. Z. Esen, S. Bor, Scr. Mater. 56, 341 (2007)

    Article  CAS  Google Scholar 

  32. X. Rao, C.L. Chu, Y.Y. Zheng, J. Mech. Behav. Biomed. Mater. 34, 27 (2014)

    Article  CAS  Google Scholar 

  33. X. Li, X.Y. Ma, Y.F. Feng, L. Wang, C.T. Wang, Compos. Sci. Technol. 117, 78 (2015)

    Article  CAS  Google Scholar 

  34. Y.H. Li, G.B. Rao, L.J. Rong, Y.Y. Li, Mater. Lett. 57, 448 (2002)

    Article  CAS  Google Scholar 

  35. L. Wu, Y.H. He, Y. Jiang, Y. Zeng, Y.F. Xiao, B. Nan, Trans. Nonferr. Met. Soc. China 24, 3509 (2014)

    Article  CAS  Google Scholar 

  36. G.Q. Xie, F.X. Qin, S.L. Zhu, D.V. Louzguine-Lugzin, Intermetallics 44, 55 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51501073, 51375209), Jiangsu Provincial Natural Science Foundation of China (BK20140162), and the Fundamental Research Funds for the Central Universities (JUSRP11455).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangxia Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, F., He, X., Yu, J. et al. Fabrication and characterization of porous Ti–4Mo alloy for biomedical applications. J Porous Mater 23, 783–790 (2016). https://doi.org/10.1007/s10934-016-0133-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-016-0133-z

Keywords

Navigation