Skip to main content

Advertisement

Log in

Reclamation of tungsten from carbide scraps and spent materials

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper reviews the state-of-the-art recycling of tungsten from carbide (WC) scraps and other spent alloys generated by various production and application industries. With an aim of direct reuse or chemical recovery of tungsten, the reclamation of WC is commonly divided into three parts: (1) pyrometallurgy, (2) hydrometallurgy, and (3) a combined (pyro + hydro) metallurgical process. The pyrometallurgical process consists of a thermal treatment under an oxidizing, reducing, or carburizing condition and of breaking the structure of hardmetals by dissolving the binder metal in a molten bath to obtain WC from spent/scrap materials. The hydrometallurgical process, based on leaching in acid and/or alkali solutions, follows precipitation/solvent extraction/ion exchange/crystallization operations to concentrate and recover the salt/s of tungsten and associated metals. The combination of both processes is employed mainly to convert the carbide phase of WC (along with the binder and/or additive metals) to their oxide forms prior to leaching in the acid/alkali solution to enhance the extraction efficacy in the aqueous solution. A critical analysis with respect to the processing conditions for extracting tungsten with the binder metal cobalt from various scrap/spent materials is given. The present paper will be helpful in developing an overall understanding of tungsten reclamation from the WC and other alloys that can provide future research directions to obtain the sustainability of this strategically conflict element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Lassner E, Schubert WD (1999) Tungsten: properties, chemistry, technology of element, alloys and chemical compounds. Kluwer Academic/Plenum Publishers, New York

    Book  Google Scholar 

  2. Vitalmetals, https://www.vitalmetals.com.au/markets/tungsten/tungsten-uses/. Accessed 30 June 2016

  3. Srivastava RR, Kim M, Lee J (2013) Separation of tungsten from Mo-rich leach liquor by adsorption onto a typical Fe–Mn cake: kinetics, equilibrium, mechanism, and thermodynamics studies. Ind Eng Chem Res 52:17591–17597. https://doi.org/10.1021/ie402434a

    Article  CAS  Google Scholar 

  4. Lyu Y, Sun Y, Yang Y (2016) Non-vacuum sintering process of WC/W2C reinforced Ni-based coating on steel. Met Mater Int 22:311–318. https://doi.org/10.1007/s12540-016-5462-6

    Article  CAS  Google Scholar 

  5. Srivastava RR, Mittal NK, Padh B, Reddy BR (2012) Removal of tungsten and other impurities from spent HDS catalyst leach liquor by an adsorption route. Hydrometallurgy 127:77–83. https://doi.org/10.1016/j.hydromet.2012.07.004

    Article  CAS  Google Scholar 

  6. Stevenson JS, Tungsten Deposits of British Columbia. http://www.empr.gov.bc.ca/Mining/Geoscience/PublicationsCatalogue/BulletinInformation/BulletinsAfter1940/Documents/Bull10.pdf. Accessed 24 April 2016

  7. Asian Metal, Tungsten: resource distribution and production, http://metalpedia.asianmetal.com/metal/tungsten/resources&production.shtml. Accessed 16 July 2016

  8. USGS, Tungsten. http://minerals.usgs.gov/minerals/pubs/commodity/tungsten/mcs-2016-tungs.pdf. Accessed 20 June 2016

  9. Clare (2014–2017) China tungsten industry report. http://www.prnewswire.com/news-releases/china-tungsten-industry-report-2014-2017-274802951.html. Accessed 22 June 2016

  10. Ogi T, Makino T, Okuyama K et al (2016) Selective biosorption and recovery of tungsten from an urban mine and feasibility evaluation. Ind Eng Chem Res 55:2903–2910. https://doi.org/10.1021/acs.iecr.5b04843

    Article  CAS  Google Scholar 

  11. WTO dispute settlement: the disputes-DS431. https://www.wto.org/english/tratop_e/dispu_e/cases_e/ds431_e.htm. Accessed 22 June 2017

  12. Wikipedia, Rare earth trade dispute, https://en.wikipedia.org/wiki/Rare_Earths_Trade_Dispute. Accessed 22 June 2016

  13. European Commission Enterprise and Industry (2010) Critical raw materials for the EU. http://www.euromines.org/files/what-we-do/sustainable-development-issues/2010-report-critical-raw-materials-eu.pdf. Accessed 18 June 2016

  14. Kim H-C, Shon I-J, Jeong I-K et al (2007) Rapid sintering of ultra fine WC and WC–Co hard materials by high-frequency induction heated sintering and their mechanical properties. Met Mater Int 13:39–45. https://doi.org/10.1007/BF03027821

    Article  CAS  Google Scholar 

  15. Genç A, Öveçoǧlu ML, Turan S (2013) Characterization of Ni-W solid solution alloy powders and sintered compacts synthesized via mechanically activated hydrogen reduction of NiO–WO3 mixtures. Met Mater Int 19:813–819. https://doi.org/10.1007/s12540-013-4022-6

    Article  CAS  Google Scholar 

  16. Srivastava RR, Kim M, Lee J, Jha MK, Kim B (2014) Resource recycling of superalloys and hydrometallurgical challenges. J Mater Sci 49:4671–4686. https://doi.org/10.1007/s10853-014-8219-y

    Article  CAS  Google Scholar 

  17. Gaur RPS (2006) Modern hydrometallurgical production methods for tungsten. JOM 58:45–49. https://doi.org/10.1007/s11837-006-0082-0

    Article  CAS  Google Scholar 

  18. Minor Metals Trade Association, Tungsten Market Overview, http://www.mmta.co.uk/tungsten-market-overview. Accessed 2 July 2016

  19. Katiyar PK, Randhawa NS, Hait J, Jana RK, Singh KK and Mankhand TR (2014) Proceedings of 18th International Conference on Nonferrous Minerals and Metals, Nagpur, Maharashtra, India

  20. Smith GR (1994) Materials flow of tungsten in the United States. Bureau of Mines Information Circular 9388, USBM, p 22

  21. Cutting Tool Engineering (2016) Recycling on the Rise. https://www.ctemag.com/news-videos/articles/recycling-rise. Accessed 20 Sep 2016

  22. Oakdene Hollins Ltd (2011) Study into the feasibility of protecting and recovering critical raw materials through infrastructure development in the south east of England. European Pathway to zero waste, UK, p 52

  23. Wernick IK, Themelis NJ (1998) Recycling metals for the environment. Annu Rev Energy Env 23:465–497. https://doi.org/10.1146/annurev.energy.23.1.465

    Article  Google Scholar 

  24. Fernandes CM, Senos AMR (2011) Cemented carbide phase diagrams: a review. Int J Refract Metal Hard Mater 29:405–418. https://doi.org/10.1016/j.ijrmhm.2011.02.004

    Article  CAS  Google Scholar 

  25. Habashi F (1969) Extractive metallurgy, vol I. Science Publishers, Paris, p 77

    Google Scholar 

  26. Vac Aero International Inc. (2017) Evaporation. https://vacaero.com/information-resources/the-heat-treat-doctor/1455-evaporation.html. Accessed 14 January 2016

  27. Yuehui H, Libao C, Baiyun H, Liaw PK (2003) Recycling of heavy metal alloy turnings to powder by oxidation–reduction process. Int J Refract Metal Hard Mater 21:227–231. https://doi.org/10.1016/S0263-4368(03)00009-X

    Article  CAS  Google Scholar 

  28. Venkateswaran S, Schubert W-D, Lux B et al (1996) W-scrap recycling by the melt bath technique. Int J Refract Metal Hard Mater 14:263–270. https://doi.org/10.1016/0263-4368(95)00055-0

    Article  CAS  Google Scholar 

  29. Adelskold V, Sunderlin A, Westgren A (1933) Carbide in kohlenstoffhaltigen Legierungen von Wolfram und Molybdan mit Chrom, Mangan, Eisen, Kobalt und Nickel. Z Anorg Allg Chem 212:401–409. https://doi.org/10.1002/zaac.19332120409

    Article  CAS  Google Scholar 

  30. Taylor A, Sachs K (1952) A new complex eta-carbide. Nature 169:411. https://doi.org/10.1038/169411a0

    Article  CAS  Google Scholar 

  31. Voitovich VB, Sverdel VV, Voitovich RF, Golovko EI (1996) Oxidation of WC–Co, WC–Ni and WC–Co–Ni hard metals in the temperature range 500–800 °C. Int J Refract Metal Hard Mater 14:289–295. https://doi.org/10.1016/0263-4368(96)00009-1

    Article  CAS  Google Scholar 

  32. Eun KY, Kim DY, Yoon DN (1984) Variation of mechanical properties with Ni/Co ratio in WC–(Co–Ni) hardmetals. Powder Metall 27:112–114. https://doi.org/10.1179/pom.1984.27.2.112

    Article  CAS  Google Scholar 

  33. Kurlov AS, Gusev AI (2013) Tungsten carbides: structure, properties and application in hardmetals. Springer, Cham

    Book  Google Scholar 

  34. Yang D, Srivastava RR, Kim M et al (2016) Efficient recycling of WC–Co hardmetal sludge by oxidation followed by alkali and sulfuric acid treatments. Met Mater Int 22:897–906. https://doi.org/10.1007/s12540-016-6060-3

    Article  CAS  Google Scholar 

  35. Phalnikar CA, Evans EB, Baldwin WM (1956) High temperature scaling of cobalt-chromium alloys. J Electrochem Soc 103:429–438. https://doi.org/10.1149/1.2430374

    Article  CAS  Google Scholar 

  36. Gulbransen EA, Andrew KF (1957) High temperature oxidation of high purity nickel between 750 and 1050 °C. J Electrochem Soc 104:451–454. https://doi.org/10.1149/1.2428624

    Article  CAS  Google Scholar 

  37. Element Tungsten, W, Transition Metal. http://tungsten.atomistry.com/. Accessed 5 March 2016

  38. Global Tungsten & Powders Corp. http://global-sei.com/sn/2011/403/3a.html. Accessed 6 June 2016

  39. Andersson KM, Bergström L (2000) Oxidation and dissolution of tungsten carbide powder in water. Int J Refract Metal Hard Mater 18:121–129. https://doi.org/10.1016/S0263-4368(00)00010-X

    Article  CAS  Google Scholar 

  40. Lee J, Kim E, Kim J-H et al (2011) Recycling of WC–Co hardmetal sludge by a new hydrometallurgical route. Int J Refract Metal Hard Mater 29:365–371. https://doi.org/10.1016/j.ijrmhm.2011.01.003

    Article  CAS  Google Scholar 

  41. Barnard PG, Kenworthy H (1971) Reclamation of refractory carbides from carbide materials. US patent 3595484

  42. Hirose K, Aoki I (1993) Recycling cemented carbides without pollution sorting charging material for zinc process. In: Henein H, Oki T (eds) First international conference on processing materials for properties, The Minerals, Metals & Materials Society, Warrendale, PA, p 845

  43. Maiti AK, Mukhopadhyay N, Raman R (2007) Effect of adding WC powder to the feedstock of WC–Co–Cr based HVOF coating and its impact on erosion and abrasion resistance. Surf Coat Technol 201:7781–7788. https://doi.org/10.1016/j.surfcoat.2007.03.014

    Article  CAS  Google Scholar 

  44. Altuncu E, Ustel F, Turk A, Ozturk S, Erdogan G (2013) Cutting-tool recycling process with the zinc-melt method for obtaining thermal-spray feedstock-spray feedstock powder. Mater Technol 47:115–118

    CAS  Google Scholar 

  45. Sumitomo Electric Industries, Ltd. Newsletter “SEI NEWS” Cemented Carbide Recycling System. http://global-sei.com/sn/2011/403/3a.html. Accessed 26 July 2016

  46. Kieffer BF, Baroch EF (1981) Procedings of extractive metallurgy of refractory metals. Sohn HY, Carlson ON, Smith JT (eds) The TMS-A1ME refractory metals committee and the physical chemistry of extractive metallurgy committee at the 110th AIME Annual Meeting, Chicago, p 273

  47. Kiefffer BF (1986) Processes for the recycling of tungsten carbide scrap. Int J Refract Met Hard Mater 5:65–68

    Google Scholar 

  48. Kieffer BF, Lassner E (1988) Proceedings of 4th international Tungsten symposium. MPR Publishing Services Ltd, Shrewsbury, p 59

    Google Scholar 

  49. Tikomet Oy: Recycling of hardmetal. http://www.tikomet.fi/en/recycling-hardmetal. Accessed 26 July 2016

  50. HHV Technologies, Carbide tools recycling plant. http://hhv.in/news/bangalore-based-hhv-manufactures–carbide-tools-recycling-plant Accessed 6 July 2016

  51. Kitakyushu Plant. http://www.kohsei.co.jp/english/business/kitakyushu.html. Accessed 25 March 2016

  52. Recycling Today, Umicore acquires specialty recycling firm, http://www.recyclingtoday.com/article/umicore-cp-chemicals-cobalt-recycling-acquisition/. Accessed 6 July 2016

  53. Lee G, Ha G, Kim B (1999) Synthesis of nanostructure W base composite powders by chemical processes. J Kor Inst Met Mater 37:1233–1237

    CAS  Google Scholar 

  54. Eso O (2014) Proceedings of advances in tungsten, refractory and hardmaterials IX. Orlando, USA, p 65

  55. Freemantle CS, Sacks N, Topic M, Pineda-Vargas CA (2014) Impurity characterization of zinc-recycled WC-6 wt% Co cemented carbides. Int J Refract Metal Hard Mater 44:94–102. https://doi.org/10.1016/j.ijrmhm.2014.01.019

    Article  CAS  Google Scholar 

  56. Kieffer BF (1982) Proceedings of international tungsten symposium—Tungsten—1982, San Francisco, USA, p 102

  57. Walraedt J (1971) Proceedings of 7th international Plansee seminar, vol. IV(2). Metallwerk Plansee, Reutte, p 1

  58. Lux B (1997) Recycling of tungsten scrap by a melt bath technique. Met Powder Rep 51(1):35. https://doi.org/10.1016/S0026-0657(97)80099-9

    Article  Google Scholar 

  59. Gu W-H, Jeong YS, Kim K et al (2012) Thermal oxidation behavior of WC–Co hard metal machining tool tip scraps. J Mater Process Technol 212:1250–1256. https://doi.org/10.1016/j.jmatprotec.2012.01.009

    Article  CAS  Google Scholar 

  60. Huang S, Xiong J, Guo Z et al (2015) Oxidation of WC–TiC–TaC–Co hard materials at relatively low temperature. Int J Refract Metal Hard Mater 48:134–140. https://doi.org/10.1016/j.ijrmhm.2014.08.002

    Article  CAS  Google Scholar 

  61. Alhazza AA (2008) Recycling of tungsten alloy swarf. Metall Mater Eng 2:219–222

    Google Scholar 

  62. Alhazza AA (2009) Oxidation and reduction of tungsten alloy swarf. Int J Refract Metal Hard Mater 27:705–710. https://doi.org/10.1016/j.ijrmhm.2008.11.006

    Article  CAS  Google Scholar 

  63. Zhang Z, Chen LB, He YH, Huang BY (2002) Recycling high density tungsten alloy powder by oxidation-reduction process. Trans Nonferrous Met Soc China 12:450–453

    CAS  Google Scholar 

  64. Heshmatpour B, McDonald RE (1982) Recovery and refining of rhenium, tungsten and molybdenum from W–Re, Mo–Re and other alloy scraps. J Less Common Metals 86:121–128. https://doi.org/10.1016/0022-5088(82)90196-5

    Article  CAS  Google Scholar 

  65. Srivastava RR, Lee J, Kim M (2015) Complexation chemistry in liquid–liquid extraction of rhenium. J Chem Technol Biotechnol 90:1752–1764. https://doi.org/10.1002/jctb.4707

    Article  CAS  Google Scholar 

  66. Srivastava RR, Kim M, Lee J, Ilyas S (2015) Liquid–liquid extraction of rhenium(VII) from an acidic chloride solution using Cyanex 923. Hydrometallurgy 157:33–38. https://doi.org/10.1016/j.hydromet.2015.07.011

    Article  CAS  Google Scholar 

  67. Yang Q, Yang J, Yang H et al (2016) Synthesis and characterization of WC–Co nanosized composite powders with in situ carbon and gas carbon sources. Met Mater Int 22:663–669. https://doi.org/10.1007/s12540-016-6033-6

    Article  CAS  Google Scholar 

  68. Fisher JK, Moyle DR (1993) Proceedings of the 13th International on Plansee Seminar vol 2. In: Bildstein H, Eck R (eds) PlanseeMetall A.G., Reutte, Austria, pp 425–439

  69. Venables DS, Brown ME (1996) Reduction of tungsten oxides with hydrogen and with hydrogen and carbon. Thermochim Acta 285:361–382. https://doi.org/10.1016/0040-6031(96)02951-6

    Article  CAS  Google Scholar 

  70. Yamamoto Y, Mizukami M, Matsumoto A (2005) Proceedings of the 16th International Plansee Seminar, vol 2, pp 492–505

  71. Ushijima K (1978) Production of WC powder from WO3 with added Co3O4. Jpn Met Soc J 42:871–874

    CAS  Google Scholar 

  72. Takatsu S (1978) A new continuous process for production of WC–Co mixed powder by rotary kilns. Powder Met Int 10:13–15

    CAS  Google Scholar 

  73. Liu W, Song X, Zhang J et al (2008) Thermodynamic analysis for in situ synthesis of WC–Co composite powder from metal oxides. Mater Chem Phys 109:235–240. https://doi.org/10.1016/j.matchemphys.2007.11.020

    Article  CAS  Google Scholar 

  74. Liu W, Song X, Zhang J et al (2009) Preparation of ultrafine WC–Co composite powder by in situ reduction and carbonization reactions. Int J Refract Metal Hard Mater 27:115–120. https://doi.org/10.1016/j.ijrmhm.2008.05.001

    Article  CAS  Google Scholar 

  75. Zhang X, Shi X, Wang J et al (2014) Effect of bonding temperature on the microstructures and strengths of C/C composite/GH3044 alloy joints by partial transient liquid-phase (PTLP) bonding with multiple interlayers. Acta Metall Sin (Engl Lett) 27:663–669. https://doi.org/10.1007/s40195-014-0090-y

    Article  CAS  Google Scholar 

  76. Jung W-G (2014) Recovery of tungsten carbide from hard material sludge by oxidation and carbothermal reduction process. J Ind Eng Chem 20:2384–2388. https://doi.org/10.1016/j.jiec.2013.10.017

    Article  CAS  Google Scholar 

  77. Hartline AG, Campbell JA, Magel TT (1996) Process for reclaiming cemented metal carbide. US patent 3953194 A

  78. Joost T, Pirso J, Viljus M (2008) Proceedings of the 6th International DAAAM Baltic, Conference Industrial Eng., Tallinn, Estonia, p 24

  79. Joost T, Pirso J, Viljus M (2009) Proceedings of the 17th International Plansee Seminar, vol 2, p HM25/1

  80. Joost R, Pirso J, Viljus M, Letunovitš S, Juhani K (2012) Recycling of WC–Co hardmetals by oxidation and carbothermal reduction in combination with reactive sintering. Est J Eng 18:127–130

    Article  CAS  Google Scholar 

  81. Arumugavelu J (2012) Process for recycling of tungsten carbide alloy. US Patent 20120251416 A1

  82. Lee G-G, Ha G-H (2016) Effects of mechanical milling on the carbothermal reduction of oxide of WC/Co hardmetal scrap. Met Mater Int 22:260–266. https://doi.org/10.1007/s12540-016-5409-y

    Article  CAS  Google Scholar 

  83. Farrell G, Anderson DM, Walton ME (1985) Tungsten recovery from carbides. US Patent 4533527 A

  84. Sasai R, Santo A, Shimizu T, Kojima T, Itoh H (2002) Waste management and the environment. In: Almorza D, Brebbia CA, Sales D, Popov V (eds), WIT Press, Sounthampton, Boston, p 22

  85. Kojima T, Shimizu T, Sasai R, Itoh H (2005) Recycling process of WC-Co cermets by hydrothermal treatment. J Mater Sci 40:5167–5172. https://doi.org/10.1007/s10853-005-4407-0

    Article  CAS  Google Scholar 

  86. Piche FJ (1979) Recovery of tungsten carbide from scrap mining bits. US Patent 4170513 A

  87. Zou D (1989) Separation of tungsten and copper in the waste W–Cu alloys by the acidolysis method. Rare Met Mater Eng 4:39–41

    Google Scholar 

  88. Redden LD, Groves RD, Seidel DC (1988) Hydrometallurgical recovery of critical metals from hardface alloy grinding waste: a laboratory study, US BuMines; RI 9210

  89. Abbaszadeh AM (2013) Tungsten direct recovery from W–Cu alloy scrap by selective digestion via FeCl3 aqueous solution. Am J Mater Sci Eng 1:1. https://doi.org/10.12691/ajmse-1-1-1

    Article  Google Scholar 

  90. Srivastava RR, Kim M, Lee J (2016) Novel aqueous processing of the reverted turbine-blade superalloy for rhenium recovery. Ind Eng Chem Res 55:8191–8199. https://doi.org/10.1021/acs.iecr.6b00778

    Article  CAS  Google Scholar 

  91. Srivastava RR, Kim M, Lee J (2016) Proceedings of hydrometallurgy 2016. SAIMM, Cape town, South Africa, p 48

  92. Gürmen S, Friedrich B (2004) Recovery of cobalt powder and tungsten carbide from cemented carbide scrap. World Metall Erzmet 57:143–147

    Google Scholar 

  93. Gürmen S, Stopic S, Friedrich B (2014) Recovery of cobalt powder and tungsten carbide from cemented carbide scrap. Part II: recovery of submicron cobalt powder from the leach solution. Erzmetall 57:341–345

    Google Scholar 

  94. Gürmen S (2005) Recovery of nano-sized cobalt powder from cemented carbide scrap. Turkish J Eng Env Sci 29:343–350

    Google Scholar 

  95. Messing GL, Zhang S-C, Jayanthi GV (1993) Ceramic powder synthesis by spray pyrolysis. J Am Ceram Soc 76:2707–2726. https://doi.org/10.1111/j.1151-2916.1993.tb04007.x

    Article  CAS  Google Scholar 

  96. Kim JH, Babushok VI, Germer TA et al (2003) Cosolvent-assisted spray pyrolysis for the generation of metal particles. J Mater Res 18:1614–1622. https://doi.org/10.1557/JMR.2003.0222

    Article  CAS  Google Scholar 

  97. Tsai SC, Song YL, Tsai CS et al (2004) Ultrasonic spray pyrolysis for nanoparticles synthesis. J Mater Sci 39:3647–3657. https://doi.org/10.1023/B:JMSC.0000030718.76690.11

    Article  CAS  Google Scholar 

  98. Maclnnis MB, Vanderpool CD (1976) Process for the reclamation of uncemented tungsten carbide powders. US Patent 3947555 A

  99. Edtmaier C, Schiesser R, Meissl C et al (2005) Selective removal of the cobalt binder in WC/Co based hardmetal scraps by acetic acid leaching. Hydrometallurgy 76:63–71. https://doi.org/10.1016/j.hydromet.2004.09.002

    Article  CAS  Google Scholar 

  100. Meissl C (2001) Diploma Thesis on Synthese von cobaltoxiden und –hydroxide (in German), TU-Vienna

  101. Bridger K, Patel RC, Matijević E (1981) Temperature dependences of the formation constants of the cobalt(II) acetate complexes. J Inorg Nucl Chem 43:1011–1016. https://doi.org/10.1016/0022-1902(81)80166-2

    Article  CAS  Google Scholar 

  102. Freemantle CS, Sacks N (2015) Recycling of cemented tungsten carbide mining tool scrap. J South Afr Inst Min Metall 115:1207–1213

    Article  CAS  Google Scholar 

  103. Madhavi Latha T, Venkatachalam S (1989) Electrolytic recovery of tungsten and cobalt from tungsten carbide scrap. Hydrometallurgy 22:353–361. https://doi.org/10.1016/0304-386X(89)90030-3

    Article  Google Scholar 

  104. Lin JC, Lin JY, Jou SP (1996) Selective dissolution of the cobalt binder from scraps of cemented tungsten carbide in acids containing additives. Hydrometallurgy 43:47–61

    Article  CAS  Google Scholar 

  105. Wongsisa S, Srichandr P, Poolthong N (2015) Development of manufacturing technology for direct recycling cemented carbide (WC-Co) tool scrap. Mat Trans JIM 56:70–77

    Article  CAS  Google Scholar 

  106. Shibata J, Murayama N, Niinae M, Furuyama T (2012) Development of advanced separation technology of rare metals using extraction and crystallization stripping. Mat Trans JIM 53:2181–2186

    Article  CAS  Google Scholar 

  107. Williams RK (2008) Fusion process using an alkali metal metalate. WO 2008073827 A9

  108. Williams RK (2008) Fusion process using an alkali metal metalate. EP Patent 2102109 A2

  109. Pandey BD, Kumar V, Bagchi D et al (2001) Processing of tungsten preconcentrate from low grade ore to recover metallic values. Miner Process Extr Metall Rev 22:101–120. https://doi.org/10.1080/08827509808962491

    Article  CAS  Google Scholar 

  110. Scott FH (1957) Extraction of tungsten from high speed grinding swarf and scale. Metallurgia 55:140–142

    CAS  Google Scholar 

  111. Douglas DA, Menashi J, Rappas AS (1981) Process for recovering chromium, vanadium, molybdenum and tungsten values from a feed material. US Patent 4298581 A

  112. Kinstle GP, Magdics AT (2002) Process for recovering the carbide metal from metal carbide scrap. US Patent 6395241 B1

  113. Lohse M (1999) Sodium tungstate preparation process. US Patent 5993756 A

  114. Lassner E (1995) From tungsten concentrates and scrap to highly pure ammonium paratungstate (APT). Int J Refract Metal Hard Mater 13:35–44. https://doi.org/10.1016/0263-4368(95)00002-X

    Article  CAS  Google Scholar 

  115. Ishida T, Itakura T, Moriguchi H, Ikegaya A (2012) Development of technologies for recycling cemented carbide scrap and reducing tungsten use in cemented carbide tools. SEI Tech Rev 75:38–46

    Google Scholar 

  116. Fruchter M, Moscovici A (1986) Process for the recovery of tungsten in a pure form from tungsten-containing materials. US Patent 4629503 A

  117. Douglas AD, Reilly KT, Landmessel JE (1986) Controllable nitrate fusion. US Patent 4603043 A

  118. Gupta CK, Suri AK (1994) Extractive metallurgy of niobium. CRC Press Inc, Florida, p 138

    Google Scholar 

  119. Brookes KJ (1990) Reclaimed tungsten powders with ‘virgin’ properties. Met Powder Rep 45:131–132. https://doi.org/10.1016/S0026-0657(10)80126-2

    Article  Google Scholar 

  120. Vanderpool CA, Wolfe TA, Miller MJ (1998) Reclamation of tungsten values from tungsten-thoria. US Patent 5819158

  121. Boyer CW, Maclnnis MB, Vanderpool CD (1975) Process for recovering tungsten from tungsten carbide containing an iron group of metals. US Patent 3887680 A

  122. Martin BE, Ritsko JE, Acla HL (1981) Process for removing tungsten from cemented tungsten carbide. US Patent 4255397 A

  123. Quatrini LR (1981) Process for recovering tungsten from cemented tungsten carbide. US Patent 4256708 A

  124. Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions. National Association of Corrosion Engineers, Texas

    Google Scholar 

  125. Mishra D, Srivastava RR, Sahu KK et al (2011) Leaching of roast-reduced manganese nodules in NH3–(NH4)2CO3 medium. Hydrometallurgy 109:215–220. https://doi.org/10.1016/j.hydromet.2011.07.006

    Article  CAS  Google Scholar 

  126. Seegopaul P, Wu L (1997) Reclamation process for tungsten carbide and tungsten-based materials. US Patent 5613998 A

  127. Luidold S, Angerer T, Antrekowitsch H (2012) Recovery of tungsten from waste material by ammonium leaching. EP Patent 2450312 A1

  128. Seegopaul P, Wu L (1998) Reclamation process for tungsten carbide/cobalt using acid digestion. US Patent 5728197 A

  129. Kim S, Seo B, Son S-H (2014) Dissolution behavior of cobalt from WC–Co hard metal scraps by oxidation and wet milling process. Hydrometallurgy 143:28–33. https://doi.org/10.1016/j.hydromet.2014.01.004

    Article  CAS  Google Scholar 

  130. Wainer E (1956) Process for recovery of tungsten values. US Patent 2735748 A

  131. Reilly KT (1983) Recovery of refractory metal values from scrap cemented carbide. US Patent 4406866 A

  132. Seegopaul P and Gao L (2003) Method of forming nanograin tungsten carbide and recycling tungsten carbide. US Patent 6524366 B1

Download references

Acknowledgements

One of the authors Dr. Vinay Kumar is thankful to The Korean Federation of Science and Technology Societies for financial support under the Brain Pool invited scientist scheme. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-chun Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, R.R., Lee, Jc., Bae, M. et al. Reclamation of tungsten from carbide scraps and spent materials. J Mater Sci 54, 83–107 (2019). https://doi.org/10.1007/s10853-018-2876-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2876-1

Keywords

Navigation