Skip to main content
Log in

Non-vacuum sintering process of WC/W2C reinforced Ni-based coating on steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Ni-based composite coatings containing varied contents of tungsten carbides on low carbon steel were fabricated. Effects of sintering temperature and tungsten carbides contents on the surface, interface, microstructure and wear resistance of the coatings were investigated using scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, Vickers microhardness tester, bulk hardness tester and pin-on-disc tribometer. The results indicated that with appropriate sintering temperature (1230 °C), smooth coating surfaces can be achieved. Favorable interfaces about 200 μm can be got that both the chemical composition and property of the interfacial region showed gradual transitions from the substrates to the coatings. Microstructure of the coatings consists of tungsten carbides and M7C3/M23C6 in the matrix. With excessive sintering temperature, tungsten carbides tend to dissolve. Ni-based coatings containing tungsten carbides showed much higher level of bulk hardness and wear resistance than ISO Fe360A and ASTM 1566 steels. With increasing contents of tungsten carbides from 25% to 40%, bulk hardness of Ni-based coatings gradually increased. Ni-based coating with 35% tungsten carbides performed the best wear resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Wang, W. M. Xia, and Y. S. Jin, Wear 195, 47 (1996).

    Article  Google Scholar 

  2. M. J. Tobar, C. Álvarez, J. M. Amado, G. Rodríguez, and A. Yáñez, Surf. Coat. Tech. 200, 6313 (2006).

    Article  Google Scholar 

  3. S. Zhou, Y. Huang, and X. Zeng, Appl. Surf. Sci. 254, 3110 (2008).

    Article  Google Scholar 

  4. S. Zhou, Y. Huang, X. Zeng, and Q. Hu, Mater. Sci. Eng. A 480, 564 (2008).

    Article  Google Scholar 

  5. S. Zhou, X. Zeng, Q. Hu, and Y. Huang, Appl. Surf. Sci. 255, 1646 (2008).

    Article  Google Scholar 

  6. J. Qu, W. Xiong, D. Ye, Z. Yao, W. Liu, and S. Lin, Int. J. Refract. Met. H. 28, 243 (2010).

    Article  Google Scholar 

  7. E. Taheri-Nassaj and S. H. Mirhosseini, J. Mater. Process. Tech. 142, 422 (2003).

    Article  Google Scholar 

  8. L. Y. Sheng, F. Yang, T. F. Xi, and J. T. Guo, J. Alloy. Compd. 554, 182 (2013).

    Article  Google Scholar 

  9. L.-M. Berger, Int. J. Refract. Met. H. 49, 350 (2015).

    Article  Google Scholar 

  10. S. Chen, J. Liang, C. Liu, K. Sun, and J. Mazumder, Appl. Surf. Sci. 258, 1443 (2011).

    Article  Google Scholar 

  11. Y. Lyu, Y. Sun, and F. Jing, Ceram. Int. 41, 10934 (2015).

    Article  Google Scholar 

  12. N. Serres, F. Hlawka, S. Costil, C. Langlade, and F. Machi, Appl. Surf. Sci. 257, 5132 (2011).

    Article  Google Scholar 

  13. P. Wu, H. M. Du, X. L. Chen, Z. Q. Li, H. L. Bai, and E. Y. Jiang, Wear 257, 142 (2004).

    Article  Google Scholar 

  14. C. Guo, J. Chen, J. Zhou, J. Zhao, L. Wang, Y. Yu, and H. Zhou, Surf. Coat. Tech. 206, 2064 (2012).

    Article  Google Scholar 

  15. C. P. Paul, H. Alemohammad, E. Toyserkani, A. Khajepour, and S. Corbin, Mater. Sci. Eng. A 464, 170 (2007).

    Article  Google Scholar 

  16. G. Y. Liang and T. T. Wong, J. Mater. Eng. Perform. 6, 41 (1997).

    Article  Google Scholar 

  17. P. H. Chong, H. C. Man, and T. M. Yue, Surf. Coat. Tech. 145, 51 (2001).

    Article  Google Scholar 

  18. F. Luo, A. Cockburn, M. Sparkes, R. Lupoi, Z.-J. Chen, W. O’Neill, J.-H. Yao, and R. Liu, Defence Technology 11, 35 (2015).

    Article  Google Scholar 

  19. Y. L. Yan, Y. Zheng, H. J. Yu, H. J. Bu, X. Cheng, and N. W. Zhao, Powder. Metall. Met. C+ 46, 449 (2007).

    Article  Google Scholar 

  20. E. O. Correa, J. N. Santos, and A. N. Klein, Int. J. Refract. Met. H. 28, 572 (2010).

    Article  Google Scholar 

  21. J. Archard and W. Hirst, P. Roy. Soc. Lond. A. Mat. 236, 397 (1956).

    Article  Google Scholar 

  22. Y. Lyu, E. Bergseth, U. Olofsson, A. Lindgren, and M. Höjer, Wear 338-339, 36 (2015).

    Article  Google Scholar 

  23. Y. Lyu, Y. Zhu, and U. Olofsson, Wear 328-329, 277 (2015).

    Article  Google Scholar 

  24. Y. Zhu, Y. Lyu, and U. Olofsson, Wear 324-325, 122 (2015).

    Article  Google Scholar 

  25. U. De Oliveira, V. Ocelík, and J. T. M. De Hosson, Surf. Coat. Tech. 201, 533 (2006).

    Article  Google Scholar 

  26. U. De Oliveira, V. Ocelík, and J. T. M. De Hosson, Surf. Coat. Tech. 201, 6363 (2007).

    Article  Google Scholar 

  27. Q.-Y. Wang, S.-L. Bai, Y.-F. Zhang, and Z.-D. Liu, Appl. Surf. Sci. 308, 285 (2014).

    Article  Google Scholar 

  28. C. Cui, F. Ye, and G. Song, Surf. Coat. Tech. 206, 2388 (2012).

    Article  Google Scholar 

  29. Q. Li, T. C. Lei, and W. Z. Chen, Surf. Coat. Tech. 114, 285 (1999).

    Article  Google Scholar 

  30. X.-M. He, X.-B. Liu, M.-D. Wang, M.-S. Yang, S.-H. Shi, G.-Y. Fu, and S.-F. Chen, Appl. Surf. Sci. 258, 535 (2011).

    Article  Google Scholar 

  31. J. Iwaszko, Surf. Coat. Tech. 201, 3443 (2006).

    Article  Google Scholar 

  32. H.-F. Xuan, Q.-Y. Wang, S.-L. Bai, Z.-D. Liu, H.-G. Sun, and P.-C. Yan, Surf. Coat. Tech. 244, 203 (2014).

    Article  Google Scholar 

  33. C. B. Finch, O. B. Cavin, and P. F. Becher, J. Cryst. Growth. 67, 556 (1984).

    Article  Google Scholar 

  34. H. Liu, C. Wang, X. Zhang, Y. Jiang, C. Cai, and S. Tang, Surf. Coat. Tech. 228, 296 (2013).

    Article  Google Scholar 

  35. Y. Sun, Y. Lyu, A. Jiang, and J. Zhao, J. Mater. Res. 29, 260 (2014).

  36. G. Hu, H. Meng, and J. Liu, Appl. Surf. Sci 317, 378 (2014).

    Article  Google Scholar 

  37. Y. Lv, Y. Sun, J. Zhao, G. Yu, J. Shen, and S. Hu, Mater. Design 39, 303 (2012).

    Article  Google Scholar 

  38. Y. Sun, Y. Lv, L. Wang, J. Shen, X. Jia, and J. Zhao, Oxid. Met. 80, 113 (2012).

    Article  Google Scholar 

  39. Y. F. Sun, Y. Z. Lv, Y. Zhang, J. Y. Zhao, and Y. Wu, Mater. Sci. Tech. Ser. 29, 511 (2013).

    Article  Google Scholar 

  40. S. F. Gnyusov and S. Y. Tarasov, Appl. Surf. Sci. 293, 318 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufu Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, Y., Sun, Y. & Yang, Y. Non-vacuum sintering process of WC/W2C reinforced Ni-based coating on steel. Met. Mater. Int. 22, 311–318 (2016). https://doi.org/10.1007/s12540-016-5462-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-016-5462-6

Keywords

Navigation