Skip to main content
Log in

Effects of mechanical milling on the carbothermal reduction of oxide of WC/Co hardmetal scrap

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The effects of mechanical milling on the carbothermal reduction of oxidized WC/Co hardmetal scrap with solid carbon were examined. Mixed powders were manufactured by milling the WC/Co hard metal scrap oxide and carbon powder in either a tumbler-ball mill or a planetary-ball mill. The milling type affected the carbothermal reduction of the oxide owing to the differing collision energies (mechanical milling energies) in the mills. The hardmetal scrap oxide powder (WO3, CoWO4) milled at high energy was more greatly reduced and at a lower temperature than that milled at lower mechanical energy. The formation of WC by the carburization reaction with solid carbon reached completion at a lower temperature after higher-energy milling than after lower-energy milling. The WC/Co composite particles synthesized by the combined oxidationmechanical milling-carbothermal reduction process were smaller when the initial powder was milled at higher mechanical energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. J. A. Brookes, World Directory and Handbook of Hardmetals and Hard Materials, Sixth ed., pp.9–20, International Carbide Data, Hertfordshire (1996).

    Google Scholar 

  2. K. Halada, J. Jap. Soc. Powder & Powder Metall. 57, 87 (2010).

    Article  Google Scholar 

  3. E. Lassner and W. D. Schubert, Tungsten Properties, Chemistry, Technology of the Element, Alloys and Chemical Compounds, pp.377–385, Bloating-Crushing Process Kluwer Academic Plenum Publishers, New York (1999).

    Google Scholar 

  4. C. S. Freemantle, N. Sacks, M. Topic, and C. A. Pineda-Vargas, Int. J. Refrac. Met. Hard Mater. 44, 94 (2014).

    Article  Google Scholar 

  5. E. Altuncu, F. Ustel, A. Turk, S. Ozturk, and G. Erdogan, Mater. & Technol. 47, 115 (2013).

    Google Scholar 

  6. E. Lassner, Int. J. Refrac. Met. Hard Mater. 13, 35 (1995).

    Article  Google Scholar 

  7. T. Ishida, T. Itakura, H. Moriguchi, and A. Ikegaya, SEI Technical Review 75, 38 (2012).

    Google Scholar 

  8. J. C. Lee, E. Y. Kim, J. H. Kim, W. Kim, B. S. Kim, and B. D. Pandey, Int. J. Refrac. Met. Hard Mater. 29, 365 (2011).

    Article  Google Scholar 

  9. A. Sampath and T. S. Sudarshan, Powder Metall. 45, 21 (2002).

    Article  Google Scholar 

  10. J. C. Lin, J. Y. Lin and S. L. Lee, U. S. Patent, No.5384016 (1995).

    Google Scholar 

  11. A. M. Human and H. E. Exner, Mater. Sci. Eng. A 209, 180 (1996).

    Article  Google Scholar 

  12. S. Wongsisa, P. Srichandr, and N. Poolthong, Mater. Trans. 56, 70 (2015).

    Article  Google Scholar 

  13. G. G. Lee and G. H. Ha, J. Korean Powder Metall. Inst. 12, 112 (2005).

    Article  Google Scholar 

  14. R. Joost, J. Pirso, M. Viljus, S. Letunovits, and K. Juhani, Estonian J. Eng. 18, 127 (2012).

    Article  Google Scholar 

  15. W. G. Jung, J. Ind. Eng. Chem. 20, 2384 (2014).

    Article  Google Scholar 

  16. K. J. A. Brookes, World Directory and Handbook of Hardmetals and Hard Materials, Sixth ed., pp.95–102, International Carbide Data, Hertfordshire (1996).

    Google Scholar 

  17. H. J. Fecht, E. Hellstern, Z. Fu, and W. L. Johnson, Metall. Trans. A 21A, 1990 (1990).

    Google Scholar 

  18. M. A. Xueming and J. I. Gang, J. Alloy. Compd. 245, L30 (1996).

    Article  Google Scholar 

  19. M. H. Enayati, G. R. Aryanpour, and A. Ebnonnasir, Int. J. Refrac. Met. Hard Mater. 27, 159 (2009).

    Article  Google Scholar 

  20. L. L. Shaw, Adv. Eng. Mater. 2, 721 (2000).

    Article  Google Scholar 

  21. W. Liu, X. Song, J. Zhang, G. Zhang, and X. Liu, Int. J. Refrac. Met. Hard Mater. 27, 115 (2009).

    Article  Google Scholar 

  22. Z. G. Ban and L. L. Shaw, J. Mater. Sci. 37, 3397 (2002).

    Article  Google Scholar 

  23. Y. Zhang and L. L. Shaw, J. Mater. Sci. 46, 6323 (2011).

    Article  Google Scholar 

  24. G. G. Lee, G. H. Ha, and B. K. Kim, J. Kor. Inst. Metal. & Mater. 37, 1233 (1999).

    Google Scholar 

  25. Z. Zhang, S. Wahlberg, M. Wang, and M. Muhammed, Nanostruct. Mater. 12, 163 (1999).

    Article  Google Scholar 

  26. T. Ryu, H. Y. Sohn, G. Han, Y. Kim, K. S. Hwang, M. Mena, and Z. Z. Fang, Metall. Mater. Trans. B 39, 1 (2008).

    Article  Google Scholar 

  27. J. Hojo, T. Oku, and A. Kato, J. Less-Common Metal 59, 85 (1978).

    Article  Google Scholar 

  28. B. D. Cullity, Elements of X-ray Diffraction, Second ed., pp.81–145, Addison-Wesley Publishing Company Inc., London (1978).

    Google Scholar 

  29. G. K. Williamson and W. H. Hall, Acta Metall. 1, 22 (1953).

    Article  Google Scholar 

  30. K. Venkateswarlu, A. C. Bose, and N. Rameshbabu, Physica B 405, 4256 (2010).

    Article  Google Scholar 

  31. ASM International Committee, ASM Handbook Vol. 7 Powder Metal Technologies and Application, pp.53–66, ASM International, New York (1998).

    Google Scholar 

  32. J. Schilz, Mater. Trans. JIM 39, 1152 (1998).

    Article  Google Scholar 

  33. N. Burgio, A. Iasonna, M. Magini, S. Martelli, and F. Padella, Il Nuovo Cimento 13, 459 (1991).

    Article  Google Scholar 

  34. H. K. Khoa, S. W. Bae, S. W. Bae, B. W. Kim, and J. S. Kim, J. Korean. Powder. Metall. Inst. 21, 155 (2014).

    Article  Google Scholar 

  35. R. Abbaschian, L. Abbaschian, and R. E. Reed-Hill, Physical Metallurgy Principles, Fourth ed., pp.348–407, Cengage Learning, New York (2010).

    Google Scholar 

  36. Z. Sadighi, A. Ataie, and M. R. Barati, Met. Mater. Int. 20, 77 (2014).

    Article  Google Scholar 

  37. S. M. Kwon, N. R. Park, J. W. Shin, S. H. Oh, B. S. Kim, and I. J. Shon, Korean J. Met. Mater. 53, 555 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gil-Geun Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, GG., Ha, GH. Effects of mechanical milling on the carbothermal reduction of oxide of WC/Co hardmetal scrap. Met. Mater. Int. 22, 260–266 (2016). https://doi.org/10.1007/s12540-016-5409-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-016-5409-y

Keywords

Navigation