Skip to main content
Log in

Efficient recycling of WC-Co hardmetal sludge by oxidation followed by alkali and sulfuric acid treatments

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

We present a process to recycle strategic metals, viz. tungsten and cobalt, from a WC-Co hardmetal sludge (WCHS) via oxidation followed by a two-step hydrometallurgical treatment with alkali and acid solutions. The oxidation of WCHS was investigated in the temperature range of 500 to 1000 °C and optimized at 600 °C to transform the maximum WC into an alkali-soluble WO3. The conditions for the selective dissolution of WO3 in stage-I were optimized as follows: 4.0 M NaOH, pulp density of 175 g/L, and temperature of 100 °C for 1 h, yielding maximum efficacy. Subsequently, in the second step, the optimal conditions for cobalt leaching from the alkali-treated residue were established as follows: 2.0 M H2SO4, 25 g/L pulp density, and 75 °C temperature for 30 min. Downstream processing of the obtained metal ions in solutions was also easier, as the only impurity of dicobaltite ions with the Na2WO4 solution was precipitated as Co(OH)3 under atmospheric O2; meanwhile, the CoSO4 solution obtained through the second step of processing can be treated via electrolysis to recover the metallic cobalt. The present process is simpler in operation, and the efficient use of eco-friendly lixiviants eliminates the previously reported disadvantage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. R. Srivastava, M.-S. Kim, J.-C. Lee, M. K. Jha, and B.-S. Kim, J. Mater. Sci. 49, 4671 (2014).

    Article  Google Scholar 

  2. Premchand, Bull Mater Sci 19, 295 (1996).

    Article  Google Scholar 

  3. R. R. Srivastava, M.-S. Kim, and J.-C. Lee, Ind. Eng. Chem. Res. 52, 17591 (2013).

    Article  Google Scholar 

  4. B.-W. Kwak, S.-J. Oh, B.-S. Kim, J.-K. Yoon, and I.-J. Shon, Korean J. Met. Mater. 54, 180 (2016).

    Article  Google Scholar 

  5. Y. Lyu, Y. Sun, and Y. Yang, Met. Mater. Int. 22, 311 (2016).

    Article  Google Scholar 

  6. E. Lassner and W. D. Schubert, Tungsten: Properties, Chemistry, Technology of Element, Alloys and Chemical Compounds, Kluwer academic/Plenum Publishers, New York (1999).

    Book  Google Scholar 

  7. G. Berrebi, P. Dufresne, and Y. Jacquier, Resour. Conserv. Recy. 10, 1 (1994).

    Article  Google Scholar 

  8. W. H. Gu, Y. S. Jeong, K. Kim, J. C. Kim, S. H. Son, and S. Kim, J. Mater. Process. Technol. 212, 1250 (2012).

    Article  Google Scholar 

  9. J. Walraedt, Powder Metall. Int. 3, 24 (1970).

    Google Scholar 

  10. S. Venkateswaran, W. D. Schubert, B. Lux, M. Ostermann, and B. Kieffer, Int. J. Refract. Met. Hard Mater. 14, 263 (1996).

    Article  Google Scholar 

  11. R. Joost, J. Pirso, M. Viljus, S. Letunovitš, and K. Juhani, Estonian Journal of Engineering 18, 127 (2012).

    Article  Google Scholar 

  12. W. G. Jung, J. Ind. Eng. Chem. 20, 2384 (2014).

    Article  Google Scholar 

  13. G.-G. Lee and G.-H. Ha, Met. Mater. Int. 22, 260 (2016).

    Article  Google Scholar 

  14. E. Altuncu, F. Ustel, A. Turk, S. Ozturk, and G. Erdogan, Materials and Technology 47, 115 (2013).

    Google Scholar 

  15. N. Gao, F. Inagaki, R. Sasai, H. Itoh, and K. Watari, Key Eng. Mater. 280-283, 1479 (2005).

    Article  Google Scholar 

  16. C. Edtmaier, R. Schiesser, C. Meissl, W. D. Schubert, A. Bock, A. Schoen, and B. Zeiler, Hydrometallurgy 76, 63 (2005).

    Article  Google Scholar 

  17. S. Gurmen, Turk. J. Eng. Env. Sci. 29, 343 (2005).

    Google Scholar 

  18. T. Kojima, T. Shimizu, R. Sasai, and H. Itoh, J. Mater. Sci. 40, 5167 (2005).

    Article  Google Scholar 

  19. J.-C. Lee, E.-Y. Kim, J.-H. Kim, W. Kim, B.-S. Kim, and B. D. Pandey, Int. J. Refract. Met. Hard Mater. 29, 365 (2011).

    Article  Google Scholar 

  20. F. Lofaj and Y. S. Kaganovskii, J. Mater. Sci. 30, 1811 (1995).

    Article  Google Scholar 

  21. E. Wainer, US Patent 2735748 (1956).

  22. P. Seegopaul and L. Gao, US Patent 6524366 (2003).

  23. M. B. MacInnis, C. D. Vanderpool, and C. W. Boyer, US Patent 3887680 (1975).

  24. B. E. Martin, J. E. Ritsko, and H. L. Acla, US Patent 4255397 (1981).

  25. L. R. Quatrini, US Patent 4256708 (1981).

  26. E. Lassner, Int. J. Refract. Met. Hard Mater. 13, 35 (1995).

    Article  Google Scholar 

  27. P. Seegopaul and L. Wu, US Patent 5613998 (1997).

  28. M. Archer, R. I. McCrindle, and E. R. Rohwer, J. Anal. At. Spectrom. 18, 1493 (2003).

    Article  Google Scholar 

  29. V. B. Voitovich, V. V. Sverdel, R. F. Voitovich, and E. I. Golovko, Int. J. Refract. Met. Hard Mater. 14, 289 (1996).

    Article  Google Scholar 

  30. K. Y. Eun, D. Y. Kim, and D. Y. Yoon, Powder Metall. 27, 112 (1984).

    Article  Google Scholar 

  31. A. S. Kurlov and A. I. Gusev, Tungsten Carbides: Structure, Properties and Application in Hardmetals, pp. 5–56, Springer Science & Business Media, Switzerland (2013).

    Google Scholar 

  32. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, pp. 280–285, pp. 307-329, National Association of Corrosion Engineers, Texas, USA (1974).

    Google Scholar 

  33. A. S. Kurlov and A. I. Gusev, Int. J. Refract. Met. Hard Mater. 41, 300 (2013).

    Article  Google Scholar 

  34. O. Madelung, M. Schulz, and H. Weiss, Semiconductors: Physics of Non-tetrahedrally Bonded Binary Compounds II, pp. 1–4, Springer-Verlag, Berlin (1984).

    Google Scholar 

  35. F. Habashi, Extractive Metallurgy, Vol. I, Science Publishers, Paris (1969).

    Google Scholar 

  36. D. A. Pankratov, A. A. Veligzhanin, and Y. V. Zubavichus, Russ. J. Inorg. Chem. 58, 67 (2013).

    Article  Google Scholar 

  37. J. A. Dean, Section 8: Electrolytes, Electromotive Force, and Chemical Equilibrium, Lange’s Handbook of Chemistry, 15th ed., McGraw-Hill Inc. USA (1999).

    Google Scholar 

  38. P. Patnaik, Cobalt(II) Hydroxide, Handbook of Inorganic Chemical Compounds, p. 243, McGraw-Hill Professional, New York, (2003).

    Google Scholar 

  39. D. Mishra, R. R. Srivastava, K. K. Sahu, T. B. Singh, and R. K. Jana, Hydrometallurgy 109, 215 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rajiv Ranjan Srivastava or Jae-chun Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Dh., Srivastava, R.R., Kim, Ms. et al. Efficient recycling of WC-Co hardmetal sludge by oxidation followed by alkali and sulfuric acid treatments. Met. Mater. Int. 22, 897–906 (2016). https://doi.org/10.1007/s12540-016-6060-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-016-6060-3

Keywords

Navigation