Advertisement

Journal of Materials Science

, Volume 53, Issue 13, pp 9842–9860 | Cite as

Morphology of cross-linked cellulose nanocrystal aerogels: cryo-templating versus pressurized gas expansion processing

  • Daniel A. Osorio
  • Bernhard Seifried
  • Paul Moquin
  • Kathryn Grandfield
  • Emily D. Cranston
Polymers

Abstract

Cellulose nanocrystal (CNC)-based aerogels are often produced through cryo-templating, followed by either critical point drying or freeze drying. While cryo-templating gives aerogels with a bimodal pore size distribution, better morphological control may be needed for certain applications. This work compares CNC aerogels prepared using a new processing method, called pressurized gas expansion (PGX) technology, to aerogels produced via cryo-templating. In all cases, CNCs were surface-modified with orthogonal functional groups to produce covalently cross-linked aerogels which are flexible and do not disperse in water. The aerogels were imaged by scanning electron microscopy and X-ray micro-computed tomography and further characterized by nitrogen sorption isotherms, X-ray diffraction, X-ray photoelectron spectroscopy, and compression testing. PGX aerogels appeared expanded and fibrillar at high magnification, with small mesopores and macropores less than 7 µm, but with large mound-like porous aggregates. Conversely, cryo-templated aerogels were comprised of denser CNC sheets surrounding macropores of 10–950 μm. Overall, PGX aerogels had a lower density, higher porosity, and a higher specific surface area than cryo-templated aerogels; they were also less stiff due to their morphology and reduced number of chemical cross-links. Scale-up of aerogel processing and understanding of the tunability of such methods may extend the use of CNCs in applications including insulation, separations, flexible supports, drug delivery, and template materials.

Notes

Acknowledgements

The authors would like to thank Ceapro Inc. for their cooperation, useful discussions, and access to PGX equipment. Funding is from the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grants RGPIN 402329 and RGPIN 588778. NSERC Engage Grant 492456-15 with Ceapro Inc., Alberta Innovates project ABI-15-001, and support from the Faculty of Engineering at McMaster University are gratefully acknowledged. We also thank N. Kudeba and L. Delgado at Ceapro for help with the production of PGX samples. We thank Professors T. Hoare, R. Pelton, A. Guarne, the Canadian Center for Electron Microscopy (CCEM), the McMaster Automotive Resource Center (MARC), McMaster Biointerfaces Institute, and the University of Waterloo for shared equipment. A. Kacheff, K.A. Johnson, I. Shahid, J. Tedesco, M. Reid, V. Jarvis, N. Belsito, T. Stimpson, and Dr. D. Covelli are gratefully acknowledged for training, sample analysis, and expertise. D. O. would like to extend a special thanks to X. Yang, for his pioneering work on CNC aerogels and guidance throughout this work.

References

  1. 1.
    Du A, Zhou B, Zhang Z, Shen J (2013) A special material or a new state of matter: a review and reconsideration of the aerogel. Materials (Basel) 6:941–968.  https://doi.org/10.3390/ma6030941 CrossRefGoogle Scholar
  2. 2.
    Hrubesh LW (1998) Aerogel applications. J Non Cryst Solids 225:335–342.  https://doi.org/10.1016/S0022-3093(98)00135-5 CrossRefGoogle Scholar
  3. 3.
    Tao Y, Endo M, Kaneko K (2008) A review of synthesis and nanopore structures of organic polymer aerogels and carbon aerogels. Recent Patents Chem Eng 1:192–200.  https://doi.org/10.2174/1874478810801030192 CrossRefGoogle Scholar
  4. 4.
    Zou J, Liu J, Karakoti AS et al (2010) Ultralight multiwalled carbon nanotube aerogel. ACS Nano 4:7293–7302CrossRefGoogle Scholar
  5. 5.
    Gui X, Wei J, Wang K et al (2010) Carbon nanotube sponges. Adv Mater 22:617–621.  https://doi.org/10.1002/adma.200902986 CrossRefGoogle Scholar
  6. 6.
    Zhu C, Han TY, Duoss EB et al (2015) Highly compressible 3D periodic graphene aerogel microlattices. Nat Commun 6:1–8.  https://doi.org/10.1038/ncomms7962 Google Scholar
  7. 7.
    Bandi S, Bell M, Schiraldi DA (2005) Temperature-responsive clay aerogel—polymer composites. Macromolecules 38:9216–9220CrossRefGoogle Scholar
  8. 8.
    Sehaqui H, Morimune S, Nishino T, Berglund LA (2012) Stretchable and strong cellulose nanopaper structures based on polymer-coated nano fiber networks: an alternative to nonwoven porous membranes from electrospinning. Biomacromol 13:3661–3667CrossRefGoogle Scholar
  9. 9.
    Sehaqui H, Zhou Q, Berglund LA (2011) High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Compos Sci Technol 71:1593–1599.  https://doi.org/10.1016/j.compscitech.2011.07.003 CrossRefGoogle Scholar
  10. 10.
    Klemm D, Heublein B, Fink H, Bohn A (2005) Polymer science cellulose: fascinating biopolymer and sustainable raw material. Angew Chemie Int Ed 44:3358–3393.  https://doi.org/10.1002/anie.200460587 CrossRefGoogle Scholar
  11. 11.
    Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crop Prod 93:2–25.  https://doi.org/10.1016/j.indcrop.2016.02.016 CrossRefGoogle Scholar
  12. 12.
    De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29:4609–4631.  https://doi.org/10.1021/acs.chemmater.7b00531 CrossRefGoogle Scholar
  13. 13.
    Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromol 6:1048–1054.  https://doi.org/10.1021/bm049300p CrossRefGoogle Scholar
  14. 14.
    Roman M (2015) Toxicity of cellulose nanocrystals: a review. Ind Biotechnol 11:25–33.  https://doi.org/10.1089/ind.2014.0024 CrossRefGoogle Scholar
  15. 15.
    Eyley S, Thielemans W (2014) Surface modification of cellulose nanocrystals. Nanoscale 6:7764–7779.  https://doi.org/10.1039/C4NR01756K CrossRefGoogle Scholar
  16. 16.
    Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500.  https://doi.org/10.1021/cr900339w CrossRefGoogle Scholar
  17. 17.
    Leung ACW, Hrapovic S, Lam E et al (2011) Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small 7:302–305.  https://doi.org/10.1002/smll.201001715 CrossRefGoogle Scholar
  18. 18.
    Yang X, Shi K, Zhitomirsky I, Cranston ED (2015) Cellulose nanocrystal aerogels as universal 3D lightweight substrates for supercapacitor materials. Adv Mater 27:6104–6109.  https://doi.org/10.1002/adma.201502284 CrossRefGoogle Scholar
  19. 19.
    Zhu H, Yang X, Cranston ED, Zhu S (2016) Flexible and porous nanocellulose aerogels with high loadings of metal-organic framework particles for separations applications. Adv Mater 28:7652–7765CrossRefGoogle Scholar
  20. 20.
    Kobayashi Y, Saito T, Isogai A (2014) Aerogels with 3D ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators. Angew Chemie 126:10562–10565.  https://doi.org/10.1002/anie.201405123 CrossRefGoogle Scholar
  21. 21.
    Beck S, Bouchard J, Berry R (2012) Dispersibility in water of dried nanocrystalline cellulose. Biomacromolecules 13:1486–1494.  https://doi.org/10.1021/bm300191k CrossRefGoogle Scholar
  22. 22.
    Eyley S, Thielemans W (2011) Imidazolium grafted cellulose nanocrystals for ion exchange applications. Chem Commun 14:4177–4179CrossRefGoogle Scholar
  23. 23.
    Tingaut P, Zimmermann T, Sèbe G (2012) Cellulose nanocrystals and microfibrillated cellulose as building blocks for the design of hierarchical functional materials. J Mater Chem 22:20105–20111.  https://doi.org/10.1039/c2jm32956e CrossRefGoogle Scholar
  24. 24.
    Rosilo H, Kontturi E, Seitsonen J et al (2013) Transition to reinforced state by percolating domains of intercalated brush-modified cellulose nanocrystals and poly(butadiene) in cross-linked composites based on thiol − ene click chemistry. Biomacromolecules 14:1547–1554CrossRefGoogle Scholar
  25. 25.
    Yang X, Cranston ED (2014) Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties. Chem Mater 26:6016–6025CrossRefGoogle Scholar
  26. 26.
    Smeets NMB, Bakaic E, Patenaude M, Hoare T (2014) Injectable and tunable poly(ethylene glycol) analogue hydrogels based on poly(oligoethylene glycol methacrylate). Chem Commun 50:3306–3309.  https://doi.org/10.1039/c3cc48514e CrossRefGoogle Scholar
  27. 27.
    Buesch C, Smith SW, Eschbach P et al (2016) The microstructure of cellulose nanocrystal aerogels as revealed by transmission electron microscope tomography. Biomacromol 17:2956–2962.  https://doi.org/10.1021/acs.biomac.6b00764 CrossRefGoogle Scholar
  28. 28.
    Abraham E, Weber DE, Sharon S et al (2017) Multifunctional cellulosic scaffolds from modified cellulose nanocrystals. Multif ACS Appl Mater interfaces 9:2010–2015.  https://doi.org/10.1021/acsami.6b13528 CrossRefGoogle Scholar
  29. 29.
    Fumagalli M, Sanchez F, Boisseau M, Heux L (2013) Gas-phase esterification of cellulose nanocrystal aerogels for colloidal dispersion in apolar solvents. Soft Matter 9:11309–11317.  https://doi.org/10.1039/c3sm52062e CrossRefGoogle Scholar
  30. 30.
    Rahbar K, Heidari H, Rashidi A (2016) Preparation and evaluation of nanocrystalline cellulose aerogels from raw cotton and cotton stalk. Ind Crop Prod 93:203–211.  https://doi.org/10.1016/j.indcrop.2016.01.044 CrossRefGoogle Scholar
  31. 31.
    Chau M, De France KJ, Kopera B et al (2016) Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chem Mater 28:3406–3415.  https://doi.org/10.1021/acs.chemmater.6b00792 CrossRefGoogle Scholar
  32. 32.
    Seifried B (2010) Physicochemical properties and microencapsulation process development for fish oil using supercritical carbon dioxide. Ph.D. Thesis, Univ. Alberta, 2010Google Scholar
  33. 33.
    Seifried B, Temelli F (2012) Supercritical fluid drying of high molecular weight biopolymers for particle formation and delivery of bioactives. Oral Present. 10th International Meeting on Supercritical Fluids (ISSF), May 13–16, 2012, San Fr. CA, USAGoogle Scholar
  34. 34.
    Seifried B (2016) PGX Technology: An enabling technology for generating biopolymer fibrils, particles, aerogels and nano-composites. Oral Present. 15th European Meeting on Supercritical Fluids (EMSF), May 8–11, 2016, Essen, GermanyGoogle Scholar
  35. 35.
    Temelli F, Seifried B (2016) Supercritical fluid treatment of high molecular weight biopolymers. US Patent 9,249,266, U.S. Patent Trademark Off. (“USPTO”), 2011, pp 1–62Google Scholar
  36. 36.
    Sun B, Hou Q, Liu Z, Ni Y (2015) Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive. Cellulose 22:1135–1146.  https://doi.org/10.1007/s10570-015-0575-5 CrossRefGoogle Scholar
  37. 37.
    Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85CrossRefGoogle Scholar
  38. 38.
    Beck S, Méthot M, Bouchard J (2015) General procedure for determining cellulose nanocrystal sulfate half-ester content by conductometric titration. Cellulose 22:101–116.  https://doi.org/10.1007/s10570-014-0513-y CrossRefGoogle Scholar
  39. 39.
    Campbell SB, Patenaude M, Hoare T (2013) Injectable Superparamagnets: highly elastic and degradable poly(N-isopropylacrylamide) − superparamagnetic iron oxide nanoparticle (SPION) composite hydrogels. Biomacromolecules 14:644–653CrossRefGoogle Scholar
  40. 40.
    Fraschini C, Chauve G, Bouchard J (2017) TEMPO-mediated surface oxidation of cellulose nanocrystals (CNCs). Cellulose 24:2775–2790.  https://doi.org/10.1007/s10570-017-1319-5 CrossRefGoogle Scholar
  41. 41.
    Seifried B, Temelli F (2010) Density of carbon dioxide expanded ethanol at (313.2, 328.2, and 343.2) K. J Chem Eng Data 55:2410–2415.  https://doi.org/10.1021/je900830s CrossRefGoogle Scholar
  42. 42.
    Bhattacharjee S (2016) Review article DLS and zeta potential—What they are and what they are not? J Control Release 235:337–351.  https://doi.org/10.1016/j.jconrel.2016.06.017 CrossRefGoogle Scholar
  43. 43.
    Reid MS, Villalobos M, Cranston ED (2017) Benchmarking cellulose nanocrystals: from the laboratory to industrial production. Langmuir 33:1583–1598.  https://doi.org/10.1021/acs.langmuir.6b03765 CrossRefGoogle Scholar
  44. 44.
    Lyons WJ (1941) Crystal density of native cellulose. J Chem Phys 9:377–378.  https://doi.org/10.1063/1.1750914 CrossRefGoogle Scholar
  45. 45.
    Ravikovitch PI, Neimark AV (2001) Characterization of micro- and mesoporosity in SBA-15 materials from adsorption data by the NLDFT method. J Phys Chem B 105:6817–6823.  https://doi.org/10.1021/jp010621u CrossRefGoogle Scholar
  46. 46.
    Seligman AM, Wasserhrug HL, Hanker JS (1966) A new staining method (OTO) for enhancing contrast of lipid droplets in osmium-tetroxide-fixed tissue osmiophilic thiocarbohydrazide (TCH). J Cell Biol 30:424–432CrossRefGoogle Scholar
  47. 47.
    Cherhal F, Cousin F, Capron I (2015) Influence of charge density and ionic strength on the aggregation process of cellulose nanocrystals in aqueous suspension, as revealed by small-angle neutron scattering. Langmuir 31:5596–5602.  https://doi.org/10.1021/acs.langmuir.5b00851 CrossRefGoogle Scholar
  48. 48.
    Hirota M, Furihata K, Saito T et al (2010) Glucose/glucuronic acid alternating co-polysaccharides prepared from TEMPO-oxidized native celluloses by surface peeling. Angew Chemie Int Ed 49:7670–7672.  https://doi.org/10.1002/anie.201003848 CrossRefGoogle Scholar
  49. 49.
    Jessop PG, Subramaniam B (2007) Gas-expanded liquids. Chem Rev 107:2666–2694.  https://doi.org/10.1021/cr040199o CrossRefGoogle Scholar
  50. 50.
    Dittmar D, Bijosono Oei S, Eggers R (2002) Interfacial tension and density of ethanol in contact with carbon dioxide. Chem Eng Technol 25:23–27.  https://doi.org/10.1002/1521-4125(200201) CrossRefGoogle Scholar
  51. 51.
    Lim JS, Lee YY, Chun HS (1994) Phase equilibria for carbon dioxide-ethanol-water system at elevated pressures. J Supercrit Fluids 7:219–230.  https://doi.org/10.1016/0896-8446(94)90009-4 CrossRefGoogle Scholar
  52. 52.
    Takishima S, Saiki K, Arai K, Saito S (1986) Phase equilibria for CO2–C2H5OH–H2O system. J Chem Eng Jpn 19:48–56.  https://doi.org/10.1252/jcej.19.48 CrossRefGoogle Scholar
  53. 53.
    Yao S, Guan Y, Zhu Z (1994) Investigation of phase equilibrium for ternary systems containing ethanol, water and carbon dioxide at elevated pressures. Fluid Phase Equilib 99:249–259.  https://doi.org/10.1016/0378-3812(94)80035-9 CrossRefGoogle Scholar
  54. 54.
    Yoon JH, Lee H, Chung BH (1994) High pressure three-phase equilibria for the carbon dioxide–ethanol–water system. Fluid Phase Equilib 102:287–292.  https://doi.org/10.1016/0378-3812(94)87081-0 CrossRefGoogle Scholar
  55. 55.
    Durling NE, Catchpole OJ, Tallon SJ, Grey JB (2007) Measurement and modelling of the ternary phase equilibria for high pressure carbon dioxide–ethanol–water mixtures. Fluid Phase Equilib 252:103–113.  https://doi.org/10.1016/j.fluid.2006.12.014 CrossRefGoogle Scholar
  56. 56.
    Heath L, Thielemans W (2010) Cellulose nanowhisker aerogels. Green Chem 12:1448–1453.  https://doi.org/10.1039/c0gc00035c CrossRefGoogle Scholar
  57. 57.
    Dorris GM, Gray DG (1978) The surface analysis of paper and wood fibers by ESCA (electron spectroscopy for chemical analysis). II. Surface composition of mechanical pulps. Cellul Chem Technol 12:721–734Google Scholar
  58. 58.
    Reid MS, Villalobos M, Cranston ED (2016) Cellulose nanocrystal interactions probed by thin film swelling to predict dispersibility. Nanoscale 8:12247–12257.  https://doi.org/10.1039/C6NR01737A CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringMcMaster UniversityHamiltonCanada
  2. 2.Ceapro Inc.EdmontonCanada
  3. 3.Department of Chemical EngineeringMcMaster UniversityHamiltonCanada

Personalised recommendations