Skip to main content
Log in

3D flowerlike TiO2/GO and TiO2/MoS2 heterostructures with enhanced photoelectrochemical water splitting

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

TiO2 nanoflowers modified with MoS2 and GO nanosheets are prepared by a one-step hydrothermal method followed by a dip-coating process. The morphology, structure and composition of the samples are investigated by XRD, SEM and XPS, respectively. The photoelectrochemical (PEC) measurement reveals that the modified samples exhibit obvious improved photocurrent density. The enhancement can be attributed to the higher absorption in visible light region and faster charge transmission as analyzed by the UV–Vis absorption, photoluminescence spectra and electrochemical impedance analysis. This facile method provides a promising low-cost way to enhance the PEC performance of TiO2-based photoanodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Roger I, Shipman MA, Symes MD (2017) Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat Rev Chem 1:0003

    Article  Google Scholar 

  2. Yang J, Wang D, Han H, Li C (2013) Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc Chem Res 46:1900–1909

    Article  Google Scholar 

  3. Hisatomi T, Kubota J, Domen K (2014) Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 43:7520–7535

    Article  Google Scholar 

  4. Mishra PR, Shukla PK, Srivastava ON (2007) Study of modular PEC solar cells for photoelectrochemical splitting of water employing nanostructured TiO2 mathContainer Loading Mathjax photoelectrodes. Int J Hydrog Energy 32:1680–1685

    Article  Google Scholar 

  5. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  Google Scholar 

  6. Su J, Li Z, Zhang Y, Wei Y, Wang X (2016) N-doped and Cu-doped TiO2-B nanowires with enhanced photoelectrochemical activity. RSC Adv 6:16177–16182

    Article  Google Scholar 

  7. Wang T, Luo Z, Li C, Gong J (2014) Controllable fabrication of nanostructured materials for photoelectrochemical water splitting via atomic layer deposition. Chem Soc Rev 43:7469–7484

    Article  Google Scholar 

  8. Cho S, Jang J-W, Lee K-H, Lee JS (2014) Research Update: Strategies for efficient photoelectrochemical water splitting using metal oxide photoanodes. APL Mater 2:010703

    Article  Google Scholar 

  9. Tang J, Durrant JR, Klug DR (2008) Mechanism of photocatalytic water splitting in TiO2. Reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry. J Am Chem Soc 130:13885–13891

    Article  Google Scholar 

  10. Xiang Q, Yu J, Jaroniec M (2012) Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J Am Chem Soc 134:6575–6578

    Article  Google Scholar 

  11. Cui H, Zhao W, Yang C, Yin H, Lin T, Shan Y, Xie Y, Gu H, Huang F (2014) Black TiO2 nanotube arrays for high-efficiency photoelectrochemical water-splitting. J Mater Chem A 2:8612–8616

    Article  Google Scholar 

  12. Liu B (2009) Oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J Am Chem Soc 131:3985–3990

    Article  Google Scholar 

  13. Momeni MM, Ghayeb Y (2015) Photoelectrochemical water splitting on chromium-doped titanium dioxide nanotube photoanodes prepared by single-step anodizing. J Alloy Compd 637:393–400

    Article  Google Scholar 

  14. Park K-H, Dhayal M (2014) Simultaneous growth of rutile TiO2 as 1D/3D nanorod/nanoflower on FTO in one-step process enhances electrochemical response of photoanode in DSSC. Electrochem Commun 49:47–50

    Article  Google Scholar 

  15. Liu X, Xing Z, Zhang Y, Li Z, Wu X, Tan S, Yu X, Zhu Q, Zhou W (2017) Fabrication of 3D flower-like black N-TiO2-x@MoS2 for unprecedented-high visible-light-driven photocatalytic performance. Appl Catal B 201:119–127

    Article  Google Scholar 

  16. Zhu Y, Shah MW, Wang C (2017) Insight into the role of Ti3+ in photocatalytic performance of shuriken-shaped BiVO4/TiO2–x heterojunction. Appl Catal B 203:526–532

    Article  Google Scholar 

  17. Zhang K, Zhou W, Chi L, Zhang X, Hu W, Jiang B, Pan K, Tian G, Jiang Z (2016) Black N/H–TiO2 nanoplates with a flower-like hierarchical architecture for photocatalytic hydrogen evolution. Chemsuschem 9:2841–2848

    Article  Google Scholar 

  18. Asemi M, Ghanaatshoar M (2016) Hydrothermal growth of one-dimensional Ce-doped TiO2 nanostructures for solid-state DSSCs comprising Mg-doped CuCrO2. J Mater Sci 52:489–503. https://doi.org/10.1007/s10853-016-0348-z.pdf

    Article  Google Scholar 

  19. Zhou X, Gossage ZT, Simpson BH, Hui J, Barton ZJ, Rodriguez-Lopez J (2016) Electrochemical imaging of photoanodic water oxidation enhancements on TiO2 thin films modified by subsurface aluminum nanodimers. ACS Nano 10:9346–9352

    Article  Google Scholar 

  20. Zhang H, Zhang D, Qin X, Cheng C (2015) Three-dimensional CdS-sensitized sea urchin like TiO2-ordered arrays as efficient photoelectrochemical anodes. J Phys Chem C 119:27875–27881

    Article  Google Scholar 

  21. Leong S, Li D, Hapgood K, Zhang X, Wang H (2016) Ni(OH)2 decorated rutile TiO2 for efficient removal of tetracycline from wastewater. Appl Catal B 198:224–233

    Article  Google Scholar 

  22. Yang W, Yu Y, Starr MB, Yin X, Li Z, Kvit A, Wang S, Zhao P, Wang X (2015) Ferroelectric polarization-enhanced photoelectrochemical water splitting in TiO2–BaTiO3 core–shell nanowire photoanodes. Nano Lett 15:7574–7580

    Article  Google Scholar 

  23. Shen M, Yan Z, Yang L, Du P, Zhang J, Xiang B (2014) MoS2 nanosheet/TiO2 nanowire hybrid nanostructures for enhanced visible-light photocatalytic activities. Chem Commun 50:15447–15449

    Article  Google Scholar 

  24. Li X, Yu J, Low J, Fang Y, Xiao J, Chen X (2015) Engineering heterogeneous semiconductors for solar water splitting. J Mater Chem A 3:2485–2534

    Article  Google Scholar 

  25. Zhang X, Shao C, Li X, Miao F, Wang K, Lu N, Liu Y (2016) 3D MoS2 nanosheet/TiO2 nanofiber heterostructures with enhanced photocatalytic activity under UV irradiation. J Alloy Compd 686:137–144

    Article  Google Scholar 

  26. Wang P, He F, Wang J, Yu H, Zhao L (2015) Graphene oxide nanosheets as an effective template for the synthesis of porous TiO2 film in dye-sensitized solar cells. Appl Surf Sci 358:175–180

    Article  Google Scholar 

  27. Kim TG, Ryu H, Lee W-J, Yoon J-H (2015) Effects of graphene oxide (GO) on GO-Cu2O composite films grown by using electrochemical deposition for a PEC photoelectrode. J Korean Phys Soc 66:1586–1592

    Article  Google Scholar 

  28. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2009) The chemistry of graphene oxide. Chem Soc Rev Chem Soc Rev 39:228–240

    Article  Google Scholar 

  29. Kołacz K, Gajewska M, Komornicki S, Radecka M (2016) The effect of GO deposition on the photoelectrochemical properties of TiO2 nanotubes. Int J Hydrog Energy 41:7538–7547

    Article  Google Scholar 

  30. Mohamed IM, Dao VD, Yasin AS, Choi HS, Khalil K, Barakat NA (2017) Facile synthesis of GO@SnO2/TiO2 nanofibers and their behavior in photovoltaics. J Colloid Interface Sci 490:303–313

    Article  Google Scholar 

  31. Gao Y, Pu X, Zhang D, Ding G, Shao X, Ma J (2012) Combustion synthesis of graphene oxide–TiO2 hybrid materials for photodegradation of methyl orange. Carbon 50:4093–4101

    Article  Google Scholar 

  32. Song P, Zhang X, Sun M, Cui X, Lin Y (2012) Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties. Nanoscale 4:1800–1804

    Article  Google Scholar 

  33. Pu X, Zhang D, Gao Y, Shao X, Ding G, Li S, Zhao S (2013) One-pot microwave-assisted combustion synthesis of graphene oxide–TiO2 hybrids for photodegradation of methyl orange. J Alloy Compd 551:382–388

    Article  Google Scholar 

  34. Sim LC, Leong KH, Ibrahim S, Saravanan P (2014) Graphene oxide and Ag engulfed TiO2 nanotube arrays for enhanced electron mobility and visible-light-driven photocatalytic performance. J Mater Chem A 2:5315–5322

    Article  Google Scholar 

  35. Chae SY, Sudhagar P, Fujishima A, Hwang YJ, Joo OS (2015) Improved photoelectrochemical water oxidation kinetics using a TiO2 nanorod array photoanode decorated with graphene oxide in a neutral pH solution. Phys Chem Chem Phys 17:7714–7719

    Article  Google Scholar 

  36. Chhowalla M, Shin HS, Eda G, Li LJ, Loh KP, Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5:263–275

    Article  Google Scholar 

  37. Tan SM, Ambrosi A, Sofer Z, Huber Š, Sedmidubský D, Pumera M (2015) Pristine basal and Edg-plane oriented molybdenite MoS2 exhibiting highly anisotropic properties. Chem Eur J 21:7170–7178

    Article  Google Scholar 

  38. Hu L, Ren Y, Yang H, Xu Q (2014) Fabrication of 3D hierarchical MoS2/polyaniline and MoS2/C architectures for lithium-ion battery applications. ACS Appl Mater Interfaces 6:14644–14652

    Article  Google Scholar 

  39. Zhou W, Yin Z, Du Y, Huang X, Zeng Z, Fan Z, Liu H, Wang J, Zhang H (2013) Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small 9:140–147

    Article  Google Scholar 

  40. Hu KH, Hu XG, Xu YF, Sun JD (2010) Synthesis of nano-MoS2/TiO2 composite and its catalytic degradation effect on methyl orange. J Mater Sci 45:2640–2648. https://doi.org/10.1007/s10853-010-4242-9

    Article  Google Scholar 

  41. Liu Q, Pu Z (2013) One-step solvothermal synthesis of MoS2/TiO2 nanocomposites with enhanced photocatalytic H2 production. J Nanopart Res 15:1–7

    Google Scholar 

  42. Wang H, Kong D, Johanes P, Cha JJ, Zheng G, Yan K, Liu N, Cui Y (2013) MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces. Nano Lett 13:3426–3433

    Article  Google Scholar 

  43. He H, Lin J, Fu W, Wang X, Wang H, Zeng Q, Gu Q, Li Y, Yan C, Tay BK (2016) MoS2/TiO2 edge on heterostructure for efficient photocatalytic hydrogen evolution. Adv Energy Mater 6:1600464

    Article  Google Scholar 

  44. Li J, Zhang Q, Lai ACK, Zeng L (2016) Study on photocatalytic performance of cerium graphene oxide titanium dioxide composite film for formaldehyde removal. Phys Status Solidi 213:3157–3164

    Article  Google Scholar 

  45. Li J, Liu W, Wang J, Rozen I, He S, Chen C, Kim HG, Lee H-J, Lee H-B-R, Kwon S-H, Li T, Li L, Wang J, Mei Y (2017) Nanoconfined atomic layer deposition of TiO2/Pt nanotubes: toward ultrasmall highly efficient catalytic nanorockets. Adv Funct Mater 27:1700598

    Article  Google Scholar 

  46. Wang D, Li X, Chen J, Tao X (2012) Enhanced photoelectrocatalytic activity of reduced graphene oxide/TiO2 composite films for dye degradation. Chem Eng J s 198–199:547–554

    Article  Google Scholar 

  47. Zhang XY, Li HP, Cui XL, Lin Y (2010) Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J Mater Chem 20:2801–2806

    Article  Google Scholar 

  48. Pandey DK, Chung TF, Prakash G, Piner R, Chen YP, Reifenberger R (2011) Folding and cracking of graphene oxide sheets upon deposition. Surf Sci 605:1669–1675

    Article  Google Scholar 

  49. O’Brien S, Koh LHK, Crean GM (2008) ZnO thin films prepared by a single step sol–gel process. Thin Solid Films 516:1391–1395

    Article  Google Scholar 

  50. Li FB, Li XZ (2002) The enhancement of photodegradation efficiency using Pt–TiO2 catalyst. Chemosphere 48:1103–1111

    Article  Google Scholar 

  51. Zhu G, Yin H, Yang C, Cui H, Wang Z, Xu J, Lin T, Huang F (2015) Black titania for superior photocatalytic hydrogen production and photoelectrochemical water splitting. ChemCatChem 7:2614–2619

    Article  Google Scholar 

  52. Tian Z, Cui H, Zhu G, Zhao W, Xu J, Shao F, He J, Huang F (2016) Hydrogen plasma reduced black TiO2 nanowires for enhanced photoelectrochemical water-splitting. J Power Sources 325:697–705

    Article  Google Scholar 

  53. Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris RC, Wang C, Zhang JZ, Li Y (2011) Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett 11:3026–3033

    Article  Google Scholar 

Download references

Acknowledgements

The financial aids of Zhejiang Provincial Natural Science Foundation of China (Grant No. LGG18E020004), Chinese National Natural Science Foundation (Grant No. 61704042) and Science and Technology Project of Zhejiang Province (Grant No. 2015C37037) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongxia Li or Zhenguo Ji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Dong, W., Xi, J. et al. 3D flowerlike TiO2/GO and TiO2/MoS2 heterostructures with enhanced photoelectrochemical water splitting. J Mater Sci 53, 7609–7620 (2018). https://doi.org/10.1007/s10853-018-2051-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2051-8

Keywords

Navigation