Skip to main content
Log in

Synthesis of Mo-based nanostructures from organic-inorganic hybrid with enhanced electrochemical for water splitting

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

A simple method to fabricate Mo-based nanostructures were developed by the thermal decomposition of MoO x -based organic–inorganic hybrid nanowires. Well-defined Mo-based nanostructures, including MoO2 and MoO3 nanowires, can be prepared by changing the hybrid precursor. More importantly, Mo2C/MoO2 heterostructures with porous structure were successfully synthesized under an inert atmosphere. The resultant Mo2C/MoO2 heterostructures show enhanced electrocatalytic activity and superior stability for electrochemical hydrogen evolution from water. The enhanced performance might be ascribed to the high electrical conductivity and porous structures with one-dimensional structure. Indeed, our result described here provides a new way to synthesize other Mo-based nanostructures for various applications.

中文摘要

钼基纳米材料因其特殊的结 构和良好的化学性质被广泛应用于传感器和催化领域. 其中, 碳化钼 具有类似贵金属的电子结 构和催化特性, 受到了越来越多的关注. 在本研究工作中, 通过对有机-无机复合材料在惰性气氛下进行热处理, 制备了不同的一维钼氧 化物纳米材料以及碳化钼/氧化钼多孔异质纳米材 料. 析氢电催化性能表明碳化钼/氧化钼多孔异质材料显示出优异的氢析出性能和循 环稳定性. 此方法制备过程简单有效且适合大量制备, 同时为制备新型钼基纳米材料提供了新的思路.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang H, Sun C, Qiao S, et al. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature, 2008, 453: 638–641

    Article  Google Scholar 

  2. Shi Y, Guo B, Corr SA, et al. Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. Nano Lett, 2009, 9: 4215–4220

    Article  Google Scholar 

  3. Hercule KM, Wei Q, Khan AM, et al. Synergistic effect of hierarchical nanostructured MoO2/Co(OH)2 with largely enhanced pseudocapacitor cyclability. Nano Lett, 2013, 13, 5685–5691

    Article  Google Scholar 

  4. Gao M, Chan M, Sun Y. Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production. Nat Commun, 2015, 6: 7493–7501

    Article  Google Scholar 

  5. Wen X, Yang W, Ding Y, et al. Piezoresistive effect in MoO3 nanobelts and its application in strain-enhanced oxygen sensors. Nano Res, 2014, 7: 180–189

    Article  Google Scholar 

  6. Buscnma M, Steele GA, van der Zant HSJ, et al. The effect of the substrate on the Raman and photoluminescence emission of single- layer MoS2. Nano Res, 2014, 7: 561–567

    Article  Google Scholar 

  7. Gastellanos-Gomez A, van der Zant HSJ, Steele GA. Folded MoS2 layers with reduced interlayer coupling. Nano Res, 2014, 7: 572–578

    Article  Google Scholar 

  8. Sun Y, Hu X, Luo W, Huang Y. Self-assembled hierarchical MoO2/graphene nanoarchitectures and their application as a high-performance anode material for lithium-ion battery. ACS Nano, 2011, 5: 7100–7107

    Article  Google Scholar 

  9. Hu B, Mai L, Chen W, et al. From MoO3 nanobelts to MoO2 nanorods: structure transformation and electrical transport. ACS Nano, 2009, 3: 478–482

    Article  Google Scholar 

  10. Walter MG, Warren EL, McKone JR, et al. Solar water splitting cells. Chem Rev, 2010, 110: 6446–6473

    Article  Google Scholar 

  11. Dempsey JL, Brunschwig BS, Winkler JR, Gray HB. Hydrogen evolution catalyzed by cobaloximes. Acc Chem Res, 2009, 42: 1995–2004

    Article  Google Scholar 

  12. Hao R, Jiang B, Li M, et al. Fabrication of mixed-crystalline-phase spindle-like TiO2 for enhanced photocatalytic hydrogen production. Sci China Mater, 2015, 58: 363–369

    Article  Google Scholar 

  13. Yin Y, Zhao S, Zhao K, et al. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat Commun, 2015, 6: 6430–6438

    Article  Google Scholar 

  14. Millet P, Andolfatto F, Durand R. Design and performance of a solid polymer electrolyte water electrolyzer. Int J Hydrogen Energy, 1996, 21: 87–93

    Article  Google Scholar 

  15. Benck JD, Chen Z, Kuritzky LY, et al. Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: insights into the origin of their catalytic activity. ACS Catal, 2012, 2: 1916–1923

    Article  Google Scholar 

  16. Xie J, Zhang J, Li S, et al. Controllable disorder engineering in oxygen- incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J Am Chem Soc, 2013, 135: 17881–17888

    Article  Google Scholar 

  17. Yang Y, Wang S, Zhang J, et al. Nanosheet-assembled MoSe2 and S-doped MoSe2–x nanostructures for superior lithium storage properties and hydrogen evolution reactions. Inorg Chem Front, 2015, 2: 931–937

    Article  Google Scholar 

  18. Gao Q, Zhao X, Xiao Y, et al. A mild route to mesoporous Mo2C-C hybrid nanospheres for high performance lithium-ion batteries. Nanoscale, 2014, 6: 6151–6157

    Article  Google Scholar 

  19. Liang CH, Ying PL, Li C. Nanostructured β-Mo2C prepared by carbothermal hydrogen reduction on ultrahigh surface area carbon material. Chem Mater, 2002, 14: 3148–3151

    Article  Google Scholar 

  20. Kolel-Veetil MK, Qadri SB, Osofsky M, et al. Formation of a superconducting mixture of β-Mo2C nanoparticles and carbon nanotubes in an amorphous matrix of molybdenum compounds by the pyrolysis of a molybdenum derivative of a carboranylenesiloxane. Chem Mater, 2005, 17: 6101–6107

    Article  Google Scholar 

  21. Lunkenbein T, Rosenthal D, Otremba T, et al. Access to ordered porous molybdenum oxycarbide/carbon nanocomposites. Angew Chem Int Ed, 2012, 51: 12892–12896

    Article  Google Scholar 

  22. Wolden CA, Pickerell A, Gawai T, et al. Synthesis of β-Mo2C thin films. ACS Appl Mater Interfaces, 2011, 3: 517–521

    Article  Google Scholar 

  23. Pang M, Chen X, Xu Q. MoCx species embedded in ordered mesoporous silica framework with hierarchical structure for hydrogenation of naphthalene. Applied Catalysis A General, 2015, 490: 146–152

    Article  Google Scholar 

  24. Xing Z, Liu Q, Asiri AM, Sun X. Closely interconnected network of molybdenum phosphide nanoparticles: a highly efficient electrocatalyst for generating hydrogen from water. Adv Mater, 2014, 26: 5702–5707

    Article  Google Scholar 

  25. Liao L, Wang S, Xiao J, et al. A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energy Environ Sci, 2014, 7: 387–392

    Article  Google Scholar 

  26. Gao Q, Zhang C, Xie S, et al. Synthesis of nanoporous molybdenum carbide nanowires based on organic–inorganic hybrid nanocomposites with sub-nanometer periodic structures. Chem Mater, 2009, 21: 5560–5562

    Article  Google Scholar 

  27. Chen WF, Wang CH, Sasaki K, et al. Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production. Energy Environ Sci, 2013, 6: 943–951

    Article  Google Scholar 

  28. Li D, Zhang Y, Li L, et al. Polydopamine directed MnOai]C microstructures as electrode for lithium ion battery. Sci China Chem, 2015, doi: 10.1007/s11426-015-5439-1

    Google Scholar 

  29. Jin Q, Pei L, Hu Y, et al. Solvo/hydrothermal preparation of MnOxai] rGO nanocomposites for electrocatalytic oxygen reduction. Acta Chim Sinica, 2014, 72: 920–926

    Article  Google Scholar 

  30. Zhao D, Li Z, Liu L, et al. Progress of preparation and application of graphene/carbon nanotube composite materials. Acta Chim Sinica, 2014, 72: 185–200

    Article  Google Scholar 

  31. Wang X, Li B, Liu D, et al. ZnWO4 nanocrystals/reduced graphene oxide hybrids: synthesis and their application for Li ion batteries. Sci China Chem, 2014, 57: 185–200

    Google Scholar 

  32. Ni JF, Zhao Y, Li L, Mai L. Ultrathin MoO2 nanosheets for superior lithium storage. Nano Energy, 2015, 11: 122–126

    Article  Google Scholar 

  33. Wu L, Wang X, Sun Y, et al. Flawed MoO2 belts transformed from MoO3 on a graphene template for the hydrogen evolution reaction. Nanoscale, 2015, 7: 7040–7044

    Article  Google Scholar 

  34. Mokari T, Rothenberg E, Popov I, et al. Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science, 2004, 304: 1787–1790

    Article  Google Scholar 

  35. Peng S, Li L, Han X, et al. Cobalt sulfide nanosheet/graphene/carbon nanotube nanocomposites as flexible electrodes for hydrogen evolution. Angew Chem Int Ed, 2014, 53: 12594–12599

    Google Scholar 

  36. Wang RH, Yang J, Shi KY, et al. Single-step pyrolytic preparation of Mo2C/graphitic carbon nanocomposite as catalyst carrier for the direct liquid-feed fuel cells. RSC Adv, 2013, 3: 4771–4777

    Article  Google Scholar 

  37. Pang M, Li C, Ding L, et al. Microwave-assisted preparation of Mo2C/CNTs nanocomposites as efficient electrocatalyst supports for oxygen reduction reaction. Ind Eng Chem Res, 2010, 49: 4169–4174

    Article  Google Scholar 

  38. Yang Y, Zhang Z, Wang P, et al. Hierarchical MnO2/SnO2 heterostructures for a novel free-standing ternary thermite membrane. Inorg Chem, 2013, 52: 9449–9455

    Article  Google Scholar 

  39. Xu B, Yang H, Zhou G, Wang X. Strong metal-support interaction in size-controlled monodisperse palladium-hematite nanoheterostructures during a liquid-solid heterogeneous catalysis. Sci C hina Mater, 2014, 57: 34–41

    Article  Google Scholar 

  40. Zhang H, Wang K, Wu X, et al. MoO2/Mo2C heteronanotubes function as high-performance Li-ion battery electrode. Adv Funct Mater, 2014, 24: 3399–2404

    Article  Google Scholar 

  41. Gao Q, Wang S, Fang H, et al. One-dimensional growth of MoOxbased organic–inorganic hybrid nanowires with tunable photochromic properties. J Mater Chem, 2012, 22: 4709–4715

    Article  Google Scholar 

  42. Lin YC, Zhang W, Huang JK, et al. Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale, 2012, 4: 6637–6641

    Article  Google Scholar 

  43. Sen UK, Shaligram A, Mitra S. Intercalation anode material for lithium ion battery based on molybdenum dioxide. ACS Appl Mat Interfaces, 2014, 6: 14311–14319

    Article  Google Scholar 

  44. Vrubel H, Merki D, Hu X. Hydrogen evolution catalyzed by MoS3 and MoS2 particles. Energy Environ Sci, 2012, 5: 6136–6144

    Article  Google Scholar 

  45. Li Y, Wang H, Xie L, et al. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc, 2011, 133: 7296–7299

    Article  Google Scholar 

  46. Liao L, Zhu J, Bian X, et al. MoS2 formed on mesoporous graphene as a highly active catalyst for hydrogen evolution. Adv Funct Mater, 2013, 23: 5326–5333

    Article  Google Scholar 

  47. Dempsey JL, Brunschwig BS, Winkler JR, Gray HB. Hydrogen evolution catalyzed by cobaloximes. Acc Chem Res, 2009, 42: 1995–2004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xun Wang.

Additional information

Yang Yong was born in 1987. He received his BSc and MSc degrees from the College of Chemical Engineering, Northwest University in 2009 and 2012, respectively. His research interests are focused on the design and synthesis of Mo-based nanostructures for energy related applications.

Wang Xun is currently a professor at the Department of Chemistry, Tsinghua University, Beijing, China. He got his PhD degree in Chemistry from the Department of Chemistry, Tsinghua University in 2004. His research interests focus on the synthesis, assembly, characterization and application of ultrathin nanomaterials.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Xu, X. & Wang, X. Synthesis of Mo-based nanostructures from organic-inorganic hybrid with enhanced electrochemical for water splitting. Sci. China Mater. 58, 775–784 (2015). https://doi.org/10.1007/s40843-015-0088-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-015-0088-4

Keywords

Navigation