Skip to main content
Log in

Hydrothermal growth of one-dimensional Ce-doped TiO2 nanostructures for solid-state DSSCs comprising Mg-doped CuCrO2

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, hydrothermal method was used to grow the one-dimensional Ce-doped TiO2 nanostructures on the fluorine-doped tin oxide glass. The incorporation of cerium atoms into the TiO2 lattice was investigated by structural and electrical analyses. The results showed that TiO2 nanorod arrays had maximum electrical conductivity for 3 % of Ce dopant. The increase in the electrical conductivity can be ascribed to the formation of oxygen vacancy in TiO2 nanostructures with Ce doping. The morphology of the as-grown nanorods revealed that the diameter of the TiO2 nanorods increased with Ce doping concentration. Hydrothermal etching treatment was performed on the as-grown 3 % Ce-doped TiO2 nanorod arrays in hydrochloric acid solution at 160 °C for different time durations. The obtained results clearly showed that the morphology change from the nanorods to the nanotubes occurred after 4 h of etching during hydrothermal treatment. In addition, sol–gel process was employed to synthesize 5 % Mg-doped CuCrO2 nanoparticles with p-type conductivity as solid-state electrolyte. The solid-state DSSCs fabricated using hydrothermally treated 3 % Ce-doped TiO2 nanorods displayed better photovoltaic performance than those made from the untreated ones. This is attributed to the larger specific surface of the hydrothermally treated nanorods compared with the untreated ones. The dye-loading measurement confirmed that the amounts of adsorbed dye on the surface of hydrothermally treated nanorods were higher than that of the untreated ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Vu THT, Au HT, Tran LT, Nguyen TMT, Tran TTT, Pham MT, Do MH, Nguyen DL (2014) Synthesis of titanium dioxide nanotubes via one-step dynamic hydrothermal process. J Mater Sci 49:5617–5625

    Article  Google Scholar 

  2. Rahmani N, Dariani RS, Rajabi M (2016) A proposed mechanism for investigating the effect of porous silicon buffer layer on TiO2 nanorods growth. Appl Surf Sci 366:359–364

    Article  Google Scholar 

  3. Yildizhan MM, Sturm S, Gulgun MA (2016) Structural and electronic modifications on TiO2 anatase by Li, K or Nb doping below and above the solubility limit. J Mater Sci 51:5912–5923

    Article  Google Scholar 

  4. Meng L, Ma A, Ying P, Feng Z, Li C (2011) Sputtered highly ordered TiO2 nanorod arrays and their applications as the electrode in dye-sensitized solar cells. J Nanosci Nanotechnol 11:929–934

    Article  Google Scholar 

  5. Zhao Y, Gu X, Qiang Y (2012) Influence of growth time and annealing on rutile TiO2 single-crystal nanorod arrays synthesized by hydrothermal method in dye-sensitized solar cells. Thin Solid Films 520:2814–2818

    Article  Google Scholar 

  6. Wei Z, Liu Y, Wang H, Mei Z, Ye J, Wen X, Gu L, Xie Y (2012) A gas-solid reaction growth of dense TiO2 nanowire arrays on Ti foils at ambient atmosphere. J Nanosci Nanotechnol 12:316–323

    Article  Google Scholar 

  7. Shankar K, Mor GK, Prakasam HE, Yoriya S, Paulose M, Varghese OK, Grimes CA (2007) Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 18:065707–065787

    Article  Google Scholar 

  8. Foong TRB, Shen Y, Hu X, Sellinger A (2010) Template-directed liquid ALD growth of TiO2 nanotube arrays: properties and potential in photovoltaic devices. Adv Funct Mater 20:1390–1396

    Article  Google Scholar 

  9. Chen RS, Chen CA, Wang WC, Tsai HY, Huang YS (2011) Transport properties in single-crystalline rutile TiO2 nanorods. Appl Phys Lett 99:222107–222109

    Article  Google Scholar 

  10. Wang HE, Chen Z, Leung YH, Luan C, Liu C, Tang Y, Yan C, Zhang W, Zapien JA, Bello I, Lee ST (2010) Hydrothermal synthesis of ordered single-crystalline rutile TiO2 nanorod arrays on different substrates. Appl Phys Lett 96:263104–263106

    Article  Google Scholar 

  11. Ameen S, Akhtar MS, Kim YS, Shin HS (2012) Controlled synthesis and photoelectrochemical properties of highly ordered TiO2 nanorods. RSC Adv 2:4807–4813

    Article  Google Scholar 

  12. Liu B, Aydil ES (2009) Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J Am Chem Soc 131:3985–3990

    Article  Google Scholar 

  13. Al-bahrani MR, Liu L, Ahmad W, Tao J, Tu F, Cheng Z, Gao Y (2015) NiO-NF/MWCNT nanocomposite catalyst as a counter electrode for high performance dye-sensitized solar cells. Appl Surf Sci 331:333–338

    Article  Google Scholar 

  14. Wang W, Chen J, Luo J, Zhang Y, Gao L, Liu Y, Sun J (2015) Effects of low pressure plasma treatments on DSSCs based on rutile TiO2 array photoanodes. Appl Surf Sci 324:143–151

    Article  Google Scholar 

  15. Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BFE, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin MK, Gratzel M (2014) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6:242–247

    Article  Google Scholar 

  16. Jiang X, Karlsson KM, Gabrielsson E, Johansson EMJ, Quintana M, Karlsson M, Sun L, Boschloo G, Hagfeldt A (2011) Highly efficient solid-state dye-sensitized solar cells based on triphenylamine dyes. Adv Funct Mater 21:2944–2952

    Article  Google Scholar 

  17. Chen X, Tang Q, He B, Chen H (2015) Graphene-incorporated quasi-solid-state dye-sensitized solar cells. RSC Adv 5:43402–43407

    Article  Google Scholar 

  18. Dkhissi D, Huang F, Cheng YB, Caruso RA (2014) Quasi-solid-state dye-sensitized solar cells on plastic substrates. J Phys Chem C 118:16366–16374

    Article  Google Scholar 

  19. Seidalilir Z, Malekfar R, Wu HP, Shiu JW, Diau EWG (2015) High-performance and stable gel-state dye-sensitized solar cells using anodic TiO2 nanotube arrays and polymer-based gel electrolytes. Appl Mater Interfaces 7:12731–12739

    Article  Google Scholar 

  20. Nejati S, Lau KKS (2011) Pore filling of nanostructured electrodes in dye sensitized solar cells by initiated chemical vapor deposition. Nano Lett 11:419–423

    Article  Google Scholar 

  21. Song MY, Ahn YR, Jo SM, Kim DY (2005) TiO2 single-crystalline nanorod electrode for quasi-solid-state dye-sensitized solar cells. Appl Phys Lett 87:113113–113115

    Article  Google Scholar 

  22. Flores IC, Freitas JND, Longo C, Paoli MAD, Winnischofer H, Nogueira AF (2007) Dye-sensitized solar cells based on TiO2 nanotubes and a solid-state electrolyte. J Photochem Photobiol, A 189:153–160

    Article  Google Scholar 

  23. Xu C, Wu J, Desai UV, Gao D (2012) High-efficiency solid-state dye-sensitized solar cells based on TiO2-coated ZnO nanowire arrays. Nano Lett 12:2420–2424

    Article  Google Scholar 

  24. Roh DK, Chi WS, Jeon H, Kim SJ, Kim JH (2014) High efficiency solid-state dye-sensitized solar cells assembled with hierarchical anatase pine tree-like TiO2 nanotubes. Adv Funct Mater 22:379–386

    Article  Google Scholar 

  25. Wang M, Bai J, Formal FL, Moon SJ, Cevey-Ha L, Humphry-Baker R, Gratzel C, Zakeeruddin SM, Gratzel M (2012) Solid-state dye-sensitized solar cells using ordered TiO2 nanorods on transparent conductive oxide as photoanodes. J Phys Chem C 116:3266–3273

    Article  Google Scholar 

  26. Asemi M, Ghanaatshoar M (2016) Conductivity improvement of CuCrO2 nanoparticles by Zn doping and their application in solid-state dye-sensitized solar cells. Ceram Int 42:6664–6672

    Article  Google Scholar 

  27. Hwang D, Jo SM, Kim DY, Armel V, Farlane DRM, Jang SY (2011) High-efficiency, solid-state, dye-sensitized solar cells using hierarchically structured TiO2 nanofibers. ACS Appl Mater Interfaces 3:1521–1527

    Article  Google Scholar 

  28. He C, Zheng Z, Tang H, Zhao L, Lu F (2009) Electrochemical impedance spectroscopy characterization of electron transport and recombination in ZnO nanorod dye-sensitized solar cells. J Phys Chem C 113:10322–10325

    Article  Google Scholar 

  29. Desai UV, Xu C, Wu J, Gao D (2012) Solid-state dye-sensitized solar cells based on ordered ZnO nanowire arrays. Nanotechnology 23:205401–205407

    Article  Google Scholar 

  30. Chen SW, Lee JM, Lu KT, Pao CW, Lee JF, Chan TS, Chen JM (2010) Band-gap narrowing of TiO2 doped with Ce probed with x-ray absorption spectroscopy. Appl Phys Lett 97:012104–012106

    Article  Google Scholar 

  31. Iwaszuk A, Nolan M (2011) Electronic structure and reactivity of Ce-and Zr-doped TiO2: assessing the reliability of density functional theory approaches. J Phys Chem C 115:12995–13007

    Article  Google Scholar 

  32. Albuquerque AR, Bruix A, Santos IMG, Sambrano JR, Illas F (2014) DFT study on Ce-doped anatase TiO2: nature of Ce3+ and Ti3+ centers triggered by oxygen vacancy formation. J Phys Chem C 118:9677–9689

    Article  Google Scholar 

  33. Nowotny MK, Bak T, Nowotny J (2006) Electrical properties and defect chemistry of TiO2 single crystal. I. electrical conductivity. J Phys Chem B 110:16270–16282

    Article  Google Scholar 

  34. Janotti A, Varley JB, Rinke P, Umezawa N, Kresse G, Walle CGW (2010) Hybrid functional studies of the oxygen vacancy in TiO2. Phys Rev B 81:085212–085218

    Article  Google Scholar 

  35. Ye M, Zheng D, Wang M, Chen C, Liao W, Lin C, Lin Z (2014) Hierarchically structured microspheres for high-efficiency rutile TiO2-based dye-sensitized solar cells. Appl Mater Interfaces 6:2893–2901

    Article  Google Scholar 

  36. Liao Y, Que W, Jia Q, He Y, Zhang J, Zhong P (2012) Controllable synthesis of brookite/anatase/rutile TiO2 nanocomposites and single-crystalline rutile nanorods array. J Mater Chem 22:7937–7944

    Article  Google Scholar 

  37. Abd El-Hafiz DR, Ebiad MA, Elsalamony RA, Mohamed LS (2015) Highly stable nano Ce-La catalyst for hydrogen production from bio-ethanol. RSC Adv 5:4292–4303

    Article  Google Scholar 

  38. Xiao G, Huang X, Liao X, Shi B (2013) One-pot facile synthesis of cerium-doped TiO2 mesoporous nanofibers using collagen fiber as the biotemplate and its application in visible light photocatalysis. J Phys Chem C 117:9739–9746

    Article  Google Scholar 

  39. Hamedani HA, Allam NK, El-Sayed MA, Khaleel MA, Garmestani H, Alamgir FM (2014) An experimental insight into the structural and electronic characteristics of strontium-doped titanium dioxide nanotube arrays. Adv Funct Mater 24:6783–6796

    Article  Google Scholar 

  40. Asemi M, Ghanaatshoar M (2014) Preparation of CuCrO2 nanoparticles with narrow size distribution by sol-gel method. J Sol-Gel Sci Technol 70:416–421

    Article  Google Scholar 

  41. Xiao G, Huang X, Liao X, Shi B (2013) One-pot facile synthesis of cerium-doped TiO2 mesoporous nanofibers using collagen fiber as the biotemplate and its application in visible light photocatalysis. J Phys Chem C 117:9739–9746

    Article  Google Scholar 

  42. Worayingyong A, Sang-urai S, Smith MF, Maensiri S, Seraphin S (2014) Effects of cerium dopant concentration on structural properties and photocatalytic activity of electrospun Ce-doped TiO2 nanofibers. Appl Phys A 117:1191–1201

    Article  Google Scholar 

  43. Xiao S, Zhao L, Lian J (2014) enhanced photocatalytic performance of supported Fe doped ZnO nanorod arrays prepared by wet chemical method. Catal Lett 144:347–354

    Article  Google Scholar 

  44. Liang Z, Cui H, Wang K, Yang P, Zhang L, Mai W, Wang CX, Liu P (2012) Morphology-controllable ZnO nanotubes and nanowires: synthesis, growth mechanism and hydrophobic property. CrystEngComm 14:1723–1728

    Article  Google Scholar 

  45. Lu X, Mou X, Wu J, Zhang D, Zhang L, Huang F, Xu F, Huang S (2010) Improved-performance dye-sensitized solar cells using Nb-doped TiO2 electrodes: efficient electron injection and transfer. Adv Funct Mater 20:509–515

    Article  Google Scholar 

  46. Wang C, Shi H, Li Y (2012) Synthesis and characterization of natural zeolite supported Cr-doped TiO2 photocatalysts. Appl Surf Sci 258:4328–4333

    Article  Google Scholar 

  47. Diaz EC, Camacho JM, Duarte-Moller A, Castro-Rodriguez R, Bartolo-Perez P (2010) Influence of the oxygen pressure on the physical properties of the pulsed-laser deposited Te doped SnO2 thin films. J. Alloys Compd 508:342–347

    Article  Google Scholar 

  48. Pan L, Huang H, Lim CK, Hong QY, Ooi MST, Tan K (2013) TiO2 rutile–anatase core–shell nanorod and nanotube arrays for photocatalytic applications. RSC Adv 3:3566–3571

    Article  Google Scholar 

  49. Zeng R, Li K, Sheng X, Chen L, Zhang H, Feng X (2016) A room temperature approach for the fabrication of aligned TiO2 nanotube arrays on transparent conductive substrates. Chem Commun 52:4045–4048

    Article  Google Scholar 

  50. Yang HG, Sun CH, Qiao SZ, Zou J, Liu G, Smith SC, Cheng HM, Lu GQ (2008) Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453:638–641

    Article  Google Scholar 

  51. Scanlon DO, Watson GW (2011) Understanding the p-type defect chemistry of CuCrO2. J Mater Chem 21:3655–3663

    Article  Google Scholar 

  52. Barnabe A, Thimont Y, Lalanne M, Presmanes L, Tailhades P (2015) P-Type conducting transparent characteristics of delafossite Mg-doped CuCrO2 thin films prepared by RF-sputtering. J Mater Chem C 3:6012–6024

    Article  Google Scholar 

  53. Scanlon DO, Dunnill CW, Buckeridge J, Shevlin SA, Logsdail AJ, Woodley SM, Catlow CRA, Powell MJ, Palgrave RG, Parkin IP, Watson GW, Kea TW, Sherwood P, Walsh A, Sokol AA (2013) Band alignment of rutile and anatase TiO2. Nat Mater 12:798–801

    Article  Google Scholar 

  54. Wei L, Yang Y, Fan R, Wang P, Li L, Yu J, Yang B, Cao W (2013) Enhance the performance of dye-sensitized solar cells by co-sensitization of 2,6-bis(iminoalkyl)pyridine and N719. RSC Adv 3:25908–25916

    Article  Google Scholar 

  55. Powar S, Xiong D, Daeneke T, Ma MT, Gupta A, Lee GP, Makuta S, Tachibana Y, Chen W, Spiccia L, Cheng YB, Gotz G, Bauerle P, Bach U (2014) Improved photovoltages for p-type dye-sensitized solar cells using CuCrO2 nanoparticles. J Phys Chem C 118:16375–16379

    Article  Google Scholar 

  56. Zaban A, Greenshtein M, Bisquert J (2003) Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements. ChemPhysChem 4:859–864

    Article  Google Scholar 

  57. Bandara J, Yasomanee JP (2007) P-type oxide semiconductors as hole collectors in dye-sensitized solid-state solar cells. Semicond Sci Technol 22:20–24

    Article  Google Scholar 

  58. Lee YM, Lai CH (2009) Preparation and characterization of solid n-TiO2/p-NiO hetrojunction electrodes for all-solid-state dye-sensitized solar cell. Solid State Electron 53:1116–1125

    Article  Google Scholar 

  59. Yuhas BD, Yang P (2009) Nanowire-based all-oxide solar cells. J Am Chem Soc 131:3756–3761

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the Iran National Science Foundation (INSF), under Grant number 93034818.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Ghanaatshoar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asemi, M., Ghanaatshoar, M. Hydrothermal growth of one-dimensional Ce-doped TiO2 nanostructures for solid-state DSSCs comprising Mg-doped CuCrO2 . J Mater Sci 52, 489–503 (2017). https://doi.org/10.1007/s10853-016-0348-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0348-z

Keywords

Navigation