Skip to main content
Log in

Synthesis of nano-MoS2/TiO2 composite and its catalytic degradation effect on methyl orange

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A nano-MoS2/TiO2 composite was synthesized in H2 atmosphere by calcining a MoS3/TiO2 precursor, which was obtained via a quick deposition of MoS3 on anatase nano-TiO2 under a strong acidic condition. The obtained nano-MoS2/TiO2 composite was characterized by X-ray diffraction spectroscopy, Brunauer–Emmett–Teller (BET) surface area, scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersive spectrometry, ultraviolet–visible spectroscopy, and Fourier transform infrared spectroscopy. The results show that the composite had a high BET surface area because of its small size and irregularly layered structure. MoS2 in the composite was composed of typical layered structures with thicknesses of 2–8 nm and lengths of 10–40 nm. The composite contained a wide and intensive absorption at 400–700 nm, which is in the visible light region, and presented a positive catalytic effect on removing methyl orange from the aqueous solution. The catalytic activity of the composite was influenced by the initial concentration of methyl orange, the amount of the catalyst, the pH value, and the degradation temperature. In addition, the composite catalyst could be regenerated and repeatedly used via filtration three times. The deactivating catalyst could be reactivated after catalytic reaction by heating at 450 °C for 30 min in H2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Valyon J, Hall WK (1983) J Catal 84:216

    Article  CAS  Google Scholar 

  2. Richardson JT (1988) J Catal 112:313

    Article  CAS  Google Scholar 

  3. Millman WS, Segawa K, Smrz D, Hall WK (1986) Polyhedron 5:169

    Article  CAS  Google Scholar 

  4. Moore SE, Lunsford JH (1982) J Catal 77:297

    Article  CAS  Google Scholar 

  5. Faye P, Payen E, Bougeard D (1999) J Mol Model 5:63

    Article  CAS  Google Scholar 

  6. Daage M, Chianelli RR (1994) J Catal 149:414

    Article  CAS  Google Scholar 

  7. Miremadi BK, Morrison SR (1987) J Catal 103:334

    Article  CAS  Google Scholar 

  8. Miremadi BK, Morrison SR (1988) J Catal 112:418

    Article  CAS  Google Scholar 

  9. Peng YY, Meng ZY, Zhong C, Lu J, Yang ZP, Qian YT (2002) Mater Chem Phys 73:327

    Article  CAS  Google Scholar 

  10. Zhan JH, Zhang ZD, Qian XF, Wang C, Xie Y, Qian YT (1998) J Solid State Chem 141:270

    Article  CAS  ADS  Google Scholar 

  11. Li WJ, Shi EW, Ko JM, Chen ZZ, Ogino H, Fukuda T (2003) J Cryst Growth 250:418

    Article  CAS  ADS  Google Scholar 

  12. Li XL, Li YD (2004) J Phys Chem B 108:13893

    Article  CAS  Google Scholar 

  13. Wilcoxon JP, Newcomer PP, Samara GA (1997) J Appl Phys 81:7934

    Article  CAS  ADS  Google Scholar 

  14. Afanasiev P, Xia GF, Berhault G, Jouguet B (1999) Chem Mater 11:3216

    Article  CAS  Google Scholar 

  15. Feldman Y, Wasserman E, Srolovitz DJ, Tenne R (1995) Science 267:222

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Zach MP, Inazu K, Ng KH, Hemmingr JC, Penner RM (2002) Chem Mater 14:3206

    Article  CAS  Google Scholar 

  17. Nath M, Govindaraj A, Rao CNR (2001) Adv Mater 13:283

    Article  CAS  Google Scholar 

  18. Zou TZ, Tu JP, Huang HD, Lai DM, Zhang LL, He DN (2006) Adv Eng Mater 8:289

    Article  CAS  Google Scholar 

  19. Hu KH, Wang YR, Hu XG, Wo HZ (2007) Mater Sci Technol 23:242

    Article  CAS  Google Scholar 

  20. Hu KH, Hu XG (2009) Mater Sci Technol 25:407

    Article  CAS  Google Scholar 

  21. Chatterjee D, Mahata A (2002) J Photochem Photobiol A 153:199

    Article  CAS  Google Scholar 

  22. Min SX, Wang F, Han YQ (2007) J Mater Sci 42:9966. doi:10.1007/s10853-007-2074-z

    Article  CAS  ADS  Google Scholar 

  23. Randeniya LK, Murphy AB, Plumb IC (2008) J Mater Sci 43:1389. doi:10.1007/s10853-007-2309-z

    Article  CAS  ADS  Google Scholar 

  24. Castro AL, Nunes MR, Carvalho AP, Costa FM, Florêncio MH (2008) Solid State Sci 10:602

    Article  CAS  ADS  Google Scholar 

  25. Reddy BM, Reddy GK, Rao KN, Ganesh I, Ferreira JMF (2009) J Mater Sci 44:4874. doi:10.1007/s10853-009-3743-x

    Article  CAS  ADS  Google Scholar 

  26. Jiang BT, Zhang SY, Guo XZ, Jin BK, Tian YP (2009) Appl Surf Sci 255:5975

    Article  CAS  ADS  Google Scholar 

  27. Iliev V, Prahov L, Bilyarska L, Fischer H, Schulz-Ekloff G, Wöhrle D, Petrov L (2000) J Mol Catal A 151:161

    Article  CAS  Google Scholar 

  28. Tributsch H (1977) Z Naturforsch 32a:972

    CAS  ADS  Google Scholar 

  29. Pelizzetti E, Visca M (1983) In: Gratzel M (ed) Energy resources through photochemistry and catalysis. Academic Press, New York, p 261

    Google Scholar 

  30. Thurston TR, Wilcoxon JP (1999) J Phys Chem B 103:11

    Article  CAS  Google Scholar 

  31. Ho WK, Yu JC, Lin J, Yu JG, Li PS (2004) Langmuir 20:5865

    Article  CAS  PubMed  Google Scholar 

  32. Wilcoxon JP, Thurston TR, Martin JE (1999) Nanostruct Mater 12:993

    Article  Google Scholar 

  33. Pourabbas B, Jamshidi B (2008) Chem Eng J 138:55

    Article  CAS  Google Scholar 

  34. Shimada H (2003) Catal Today 86:17

    Article  CAS  Google Scholar 

  35. Kam KK, Parkinson BA (1982) J Phys Chem 86:463

    Article  CAS  Google Scholar 

  36. Huang JM, Laitinen RA, Kelley DF (2000) Phys Rev B 62:10995

    Article  CAS  ADS  Google Scholar 

  37. Wilcoxon JP (2000) J Phys Chem B 104:7334

    Article  CAS  Google Scholar 

  38. Baiocchi C, Brussino MC, Pramauro E, Prevot AB, Palmisano L, Marcì G (2002) Int J Mass Spectrom 214:247

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support from the National Key Technology R&D Program of China (Grant No. 2007BAD34B02), National Natural Science Foundation of China (Grant No. 50905054), Anhui Provincial Natural Science Foundation (Grant No. 070414152), and Anhui Provincial Foundation for Excellent Young Talents in University (Grant No. 2010SQRL160) is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Hong Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, K.H., Hu, X.G., Xu, Y.F. et al. Synthesis of nano-MoS2/TiO2 composite and its catalytic degradation effect on methyl orange. J Mater Sci 45, 2640–2648 (2010). https://doi.org/10.1007/s10853-010-4242-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4242-9

Keywords

Navigation