Skip to main content
Log in

Fluorinated liquid crystalline surfactants for dispersion and alignment of carbon nanotubes

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An effective and promising approach for dispersion and alignment of carbon nanotubes (CNTs) with the help of fluorinated liquid crystalline surfactants (FLCSs), which possess excellent affinity with CNTs and liquid crystals (LCs), is presented here. A binary mode is designed to express the dispersion of CNTs with CNTs joining the nematic matrix of FLCSs. Ultraviolet–visible spectrum and fourier transform infrared (FTIR) spectrum are recorded to figure out the concentration of effectively dispersed CNTs by FLCSs, the concentration in chloroform reaches a maximum 1.481 mg mL−1. The miscibility between FLCSs and CNTs is analyzed by FTIR imaging system with P7 giving rise to the best miscibility. The homogeneously dispersed CNTs decrease the glass transition temperature of FLCSs by increasing the degree of freedom of the segment on FLCS to move, and enhance the thermal stability of FLCSs by increasing the decomposition temperature and the activation energy for thermal decomposition. The optical textures show that P7 increases the compatibility between LC host and CNTs. The chiral stability and electro-optical property of LC host are both optimized by CNT doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB (2002) Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298:2361–2366

    Article  Google Scholar 

  2. Osman MA, Srivastava D (2001) Temperature dependence of the thermal conductivity of single-wall carbon nanotubes. Nanotechnology 12:21–24

    Article  Google Scholar 

  3. Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T (1996) Electrical conductivity of individual carbon nanotubes. Nature 382:54–56

    Article  Google Scholar 

  4. Sun D, Everett WN, Chu CC, Sue HJ (2009) Single-walled carbon-nanotube dispersion with electrostatically tethered nanoplatelets. Small 5:2692–2697

    Article  Google Scholar 

  5. Qian D, Wagner GJ, Liu WK (2002) Mechanics of carbon nanotubes. Appl Mech Rev 55:495–533

    Article  Google Scholar 

  6. Kulkarni MV, Kale BB (2013) Studies of conducting polyaniline (PANI) wrapped-multiwalled carbon nanotubes (MWCNTs) nanocomposite and its application for optical pH sensing. Sens Actuator B 187:407–412

    Article  Google Scholar 

  7. Khudyakov DV, Lobach AS, Nadtochenko VA (2009) Nonlinear optical absorption of single-wall carbon nanotubes in carboxymethylcellulose thin polymerfilm and its application as a saturable absorber for mode-locking in pulsed Nd: glass laser. Appl Optics 48:1624–1627

    Article  Google Scholar 

  8. Li TX, Lee JH, Wang RZ, Kang YT (2013) Enhancement of heat transfer for thermal energy storage application using stearic acid nanocomposite with multi-walled carbon nanotubes. Energy 55:752–761

    Article  Google Scholar 

  9. Chang HY, Chang HC, Lee KY (2013) Characteristics of NiO coating on carbon nanotubes for electric double layer capacitor application. Vacuum 87:164–168

    Article  Google Scholar 

  10. Khavrus VO, Weiser M, Fritsch M, Ummethala R, Salvaggio MG, Schneider M, Kusnezoff M, Leonhardt A (2012) Application of carbon nanotubes directly grown on aluminum foils as electric double layer capacitor electrodes. Chem Vapor Depos 18:53–60

    Article  Google Scholar 

  11. Coleman JN, Khan U, Gun’ko YK (2006) Mechanical reinforcement of polymers using carbon nanotubes. Adv Mater 18:689–706

    Article  Google Scholar 

  12. Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44:1624–1652

    Article  Google Scholar 

  13. Gupta A, Choudhary V (2013) Thermal and mechanical properties of poly (trimethyelene terephthalate)/acid-treated multiwalled carbon nanotube composites. J Mater Sci 48:7063–7070. doi:10.1007/s10853-013-7517-0

    Article  Google Scholar 

  14. Abbasov ME, Ghosh S, Quach A, Carlisle GO (2010) Hybrid carbon nanotube and dye-doped liquid crystal material for holographic imaging. J Mater Sci Mater Electron 21(8):854–859

    Article  Google Scholar 

  15. Kis A, Csanyi G, Salvetat JP, Lee TN, Couteau E, Kulik AJ, Benoit W, Brugger J, Forro L (2004) Reinforcement of single-walled carbon nanotube bundles by intertube bridging. Nat Mater 3(3):153–157

    Article  Google Scholar 

  16. Datsyuk V, Landois P, Fitremann J, Peigney A, Galibert AM, Soula B, Flahaut E (2009) Double-walled carbon nanotube dispersion via surfactant substitution. J Mater Chem 19(18):2729–2736

    Article  Google Scholar 

  17. Wang S, Liang R, Wang B, Zhang C (2009) Dispersion and thermal conductivity of carbon nanotube composites. Carbon 47(1):53–57

    Article  Google Scholar 

  18. Li Q, Zaiser M, Koutsos V (2004) Carbon nanotube/epoxy resin composites using a block copolymer as a dispersing agent. Phys Status Solidi A (a) 201(13):R89–R91

    Article  Google Scholar 

  19. Ogihara H, Xie J, Saji T (2014) Spraying carbon nanotube dispersions to prepare superhydrophobic films. J Mater Sci 49:3183–3188. doi:10.1007/s10853-014-8021-x

    Article  Google Scholar 

  20. Zhao Y, Barrera EV (2010) Asymmmetric diamino functionalization of nanotubes assisted by BOC protection and their epoxy nanocomposites. Adv Funct Mater 20:3039–3044

    Article  Google Scholar 

  21. Cheng Q, Bao J, Park JG, Liang ZY, Zhang C, Wang B (2009) High mechanical performance composite conductor: multi-walled carbon nanotube sheet/bismaleimide nanocomposites. Adv Funct Mater 19:3219–3225

    Article  Google Scholar 

  22. Ajayan PM, Suhr JW, Koratkar N (2006) Utilizing interfaces in carbon nanotube reinforced polymer composites for structural damping. J Mater Sci 41:7824–7829. doi:10.1007/s10853-006-0693-4

    Article  Google Scholar 

  23. Zhang K, Lim JY, Choi HJ, Lee JH, Choi WJ (2013) Ultrasonically prepared polystyrene/multi-walled carbon nanotube nanocomposites. J Mater Sci 48:3088–3096. doi:10.1007/s10853-012-7083-x

    Article  Google Scholar 

  24. Kim S, Lee JW, Hong IK, Lee S (2014) Electrical conductivity enhancement of polycarbonate/poly (styrene-co-acrylonitril)/carbon nanotube composites by high intensity ultrasound. Macromol Res 22(2):154–159

    Article  Google Scholar 

  25. Isayev AI, Kumar R, Lewis TM (2009) Ultrasound assisted twin screw extrusion of polymer-nanocomposites containing carbon nanotubes. Polymer 50(1):250–260

    Article  Google Scholar 

  26. Yu H, Hermann S, Schulz SE, Gessner T, Dong Z, Li WJ (2012) Optimizing sonication parameters for dispersion of single-walled carbon nanotubes. Chem Phys 408:11–16

    Article  Google Scholar 

  27. Park JH, Alegaonkar PS, Jeon SY, Yoo JB (2008) Carbon nanotube composite: dispersion routes and field emission parameters. Compos Sci Technol 68(3):753–759

    Article  Google Scholar 

  28. Andrews R, Jacques D, Minot M, Rantell T (2002) Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromol Mater Eng 287(6):395–403

    Article  Google Scholar 

  29. Mirjalili V, Yourdkhani M, Hubert P (2012) Dispersion stability in carbon nanotube modified polymers and its effect on the fracture toughness. Nanotechnology 23(31):315701

    Article  Google Scholar 

  30. Mun SC, Kim M, Prakashan K, Jung HJ, Son YG, Park OO (2014) A new approach to determine rheological of carbon nanotubes in microstructured polymer matrices. Carbon 67:64–71

    Article  Google Scholar 

  31. Lee GW, Jagannathan S, Chae HG, Minus ML, Kumar S (2008) Carbon nanotube dispersion and exfoliation in polypropylene and structure and properties of the resulting composites. Polymer 49(7):1831–1840

    Article  Google Scholar 

  32. Fornes TD, Baur JW, Sabba Y, Thomas EL (2006) Morphology and properties of melt-spun polycarbonate fibers containing single-and multi-wall carbon nanotubes. Polymer 47(5):1704–1714

    Article  Google Scholar 

  33. Han MS, Lee YK, Kim WN, Lee HS, Joo JS, Park M, Lee HJ, Park CR (2009) Effect of multi-walled carbon nanotube dispersion on the electrical, morphological and rheological properties of polycarbonate/multi-walled carbon nanotube composites. Macromol Res 17(11):863–869

    Article  Google Scholar 

  34. Bisoyi HK, Kumar S (2011) Liquid-crystal nanoscience: an emerging avenue of soft self-assembly. Chem Soc Rev 40(1):306–319

    Article  Google Scholar 

  35. Basu R, Iannacchione GS (2010) Orientational coupling enhancement in a carbon nanotube dispersed liquid crystal. Phys Rev E 81:051705

    Article  Google Scholar 

  36. Qi H, Hegmann T (2008) Impact of nanoscale particles and carbon nanotubes on current and future generations of liquid crystal displays. J Mater Chem 18(28):3288–3294

    Article  Google Scholar 

  37. Malik P, Chaudhary A, Mehra R, Raina KK (2012) Electro-optic, thermo-optic and dielectric responses of multiwalled carbon nanotube doped ferroelectric liquid crystal thin films. J Mol Liq 165:7–11

    Article  Google Scholar 

  38. Basu R, Iannacchione GS (2009) Nematic anchoring on carbon nanotubes. Appl Phys Lett 95:173113

    Article  Google Scholar 

  39. Lin CH (1971) Nitro-and amino-substituted fluorans. US Patent 3624107

  40. Wang Y (2005) Synthesis and properties of thermochromic dyes and liquid crystalline polymers. PhD Dissertation, Northeastern University

  41. Zhang BY, Meng FB, Cong YH (2007) Optical characterization of polymer liquid crystal cell exhibiting polymer blue phases. Opt Express 15:10175–10181

    Article  Google Scholar 

  42. Lu SX, Melo MM, Zhao JQ, Pearce EM, Kwei TK (1995) Organic-inorganic polymeric hybrids involving novel poly (hydroxymethylsiloxane). Macromolecules 28:4908–4913

    Article  Google Scholar 

  43. Finkelmann H, Rehage G (1984) Liquid crystal side chain polymers. Springer, Heidelberg, pp 152–153

    Google Scholar 

  44. Goh PS, Ng BC, Ismail AF, Aziz M (2010) Surfactant dispersed multi-walled carbon nanotube/polyetherimide nanocomposite membrane. Solid State Sci 12:2155–2162

    Article  Google Scholar 

  45. Horowitz HH, Metzger G (1963) A new analysis of thermogravimetric traces. Anal Chem 35:1464–1468

    Article  Google Scholar 

  46. Matsui T, Ozaki M, Yoshino K (2004) Tunable photonic defect modes in a cholesteric liquid crystal induced by optical deformation of helix. Phys Rev E 69(6):061715–061715-4

    Article  Google Scholar 

  47. Lu SY, Chien LC (2007) A polymer-stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection. Appl Phys Lett 91(13):131119–131119-3

    Article  Google Scholar 

  48. Matsui T, Ozaki R, Funamoto K, Ozaki M, Yoshino K (2002) Flexible mirrorless laser based on a free-standing film of photopolymerized cholesteric liquid crystal. Appl Phys Lett 81(20):3741–3743

    Article  Google Scholar 

  49. Meiboom S, Sammon M (1980) Structure of the blue phase of a cholesteric liquid crystal. Phys Rev Lett 44(13):882–885

    Article  Google Scholar 

  50. Hong Q, Wu TX, Wu ST (2003) Optical wave propagation in a cholesteric liquid crystal using the finite element method. Liq Cryst 30(3):367–375

    Article  Google Scholar 

  51. Blinov LM, Palto SP (2009) Cholesteric helix: topological problem, photonics and electro-optics. Liq Cryst 36:1037–1047

    Article  Google Scholar 

  52. Ji Y, Huang YY, Rungsawang R, Terentjev EM (2010) Dispersion and alignment of carbon nanotubes in liquid crystalline polymers and elastomers. Adv Mater 22:3436–3440

    Article  Google Scholar 

Download references

Acknowledgements

The study was funded by the Education Department of Liaoning Province and the Minister of Education of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoyan Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 443 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, P., Cong, Y. & Zhang, B. Fluorinated liquid crystalline surfactants for dispersion and alignment of carbon nanotubes. J Mater Sci 50, 4187–4199 (2015). https://doi.org/10.1007/s10853-015-8969-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8969-1

Keywords

Navigation