Skip to main content
Log in

Mesoporous Nanofibers from Extended Electrospinning Technique

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

One-dimensional (1D) mesoporous nanofibers (NFs) have recently attracted tremendous interest in different fields, in virtue of their mesoporous structure and 1D geometry. However, conventional electrospinning, as a versatile approach for producing 1D nanostructures, can only fabricate solid NFs without pores or with a microporous structure. In this review, we focus on the extensions of the electrospinning technique to create 1D mesoporous fibrous structures, which can be categorized into: (i) foaming-assisted, (ii) phase separation-induced, (iii) soft-templated, and (iv) monomicelle-directed approaches. Special focus is on the synthesis strategies of 1D mesoporous NFs, and their underlying mechanisms, with looking into the control over pore sizes, pore structures, and functionalities. Moreover, the structure-related performances of mesoporous NFs in photocatalysis, sensing, and energy-related fields are discussed. Finally, the potential challenges for the future development of 1D mesoporous fibers are examined from the viewpoint of their synthetic strategies and applications.

Graphical Abstract

Four extended electrospinning techniques to construct mesoporous nanofibers were summarized and the structure related performances in photocatalysis, sensors, and energy related fields were highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Zhao TC, Elzatahry A, Li XM, Zhao DY. Single-micelle-directed synthesis of mesoporous materials. Nat Rev Mater. 2019;4:775–91.

    Article  CAS  Google Scholar 

  2. Zhao TC, Chen L, Wang PY, Li BH, Lin RF, AlKhalaf AA, Hozzein WN, Zhang F, Li XM, Zhao DY. Surface-kinetics mediated mesoporous multipods for enhanced bacterial adhesion and inhibition. Nat Commun. 2019;10:4387.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Li W, Liu J, Zhao DY. Mesoporous materials for energy conversion and storage devices. Nat Rev Mater. 2016;1:16023.

    Article  CAS  Google Scholar 

  4. Kong B, Tang J, Zhang YY, Jiang T, Gong XG, Peng CX, Wei J, Yang JP, Wang YC, Wang XB, Zheng GF, Selomulya C, Zhao DY. Incorporation of well-dispersed sub-5-nm graphitic pencil nanodots into ordered mesoporous frameworks. Nat Chem. 2016;8:171–8.

    Article  CAS  PubMed  Google Scholar 

  5. Walcarius A. Mesoporous materials and electrochemistry. Chem Soc Rev. 2013;42:4098–140.

    Article  CAS  PubMed  Google Scholar 

  6. Perego C, Millini R. Porous materials in catalysis: challenges for mesoporous materials. Chem Soc Rev. 2013;42:3956–76.

    Article  CAS  PubMed  Google Scholar 

  7. Linares N, Silvestre-Albero AM, Serrano E, Silvestre-Albero J, García-Martínez J. Mesoporous materials for clean energy technologies. Chem Soc Rev. 2014;43:7681–717.

    Article  CAS  PubMed  Google Scholar 

  8. Wang J, Ma QQ, Wang YQ, Li ZH, Li ZH, Yuan Q. New insights into the structure–performance relationships of mesoporous materials in analytical science. Chem Soc Rev. 2018;47:8766–803.

    Article  CAS  PubMed  Google Scholar 

  9. Qiu PP, Ma B, Hung CT, Li W, Zhao DY. Spherical mesoporous materials from single to multilevel architectures. Acc Chem Res. 2019;52:2928–38.

    Article  CAS  PubMed  Google Scholar 

  10. Lan K, Xia Y, Wang RC, Zhao ZW, Zhang W, Zhang XM, Elzatahry A, Zhao DY. Confined interfacial monomicelle assembly for precisely controlled coating of single-layered titania mesopores. Matter. 2019;1:527–38.

    Article  Google Scholar 

  11. Peng L, Hung CT, Wang SW, Zhang XM, Zhu XH, Zhao ZW, Wang CY, Tang Y, Li W, Zhao DY. Versatile nanoemulsion assembly approach to synthesize functional mesoporous carbon nanospheres with tunable pore sizes and architectures. J Am Chem Soc. 2019;141:7073–80.

    Article  CAS  PubMed  Google Scholar 

  12. Duan LL, Hung CT, Wang JX, Wang CY, Ma B, Zhang W, Ma YZ, Zhao ZW, Yang CC, Zhao TC, Peng L, Liu D, Zhao DY. Synthesis of fully exposed single-atom-layer metal clusters on 2D ordered mesoporous TiO2 nanosheets. Angew Chem Int Ed. 2022;61: e202211307.

    Article  CAS  Google Scholar 

  13. Zhu XH, Xia Y, Zhang XM, Al-Khalaf AA, Zhao TC, Xu JX, Peng L, Hozzein WN, Li W, Zhao DY. Synthesis of carbon nanotubes@mesoporous carbon core–shell structured electrocatalysts via a molecule-mediated interfacial co-assembly strategy. J Mater Chem A. 2019;7:8975–83.

    Article  CAS  Google Scholar 

  14. Li C, Li Q, Kaneti YV, Hou D, Yamauchi Y, Mai YY. Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems. Chem Soc Rev. 2020;49:4681–736.

    Article  CAS  PubMed  Google Scholar 

  15. Duan LL, Wang CY, Zhang W, Ma B, Deng YH, Li W, Zhao DY. Interfacial assembly and applications of functional mesoporous materials. Chem Rev. 2021;121:14349–429.

    Article  CAS  PubMed  Google Scholar 

  16. Yu J, Yu H, Cheng B, Zhao X, Zhang Q. Preparation and photocatalytic activity of mesoporous anatase TiO2 nanofibers by a hydrothermal method. J Photochem Photobio A: Chem. 2006;182:121–7.

    Article  CAS  Google Scholar 

  17. Wang H, Deng J, Chen Y, Xu F, Wei Z, Wang Y. Hydrothermal synthesis of manganese oxide encapsulated multiporous carbon nanofibers for supercapacitors. Nano Res. 2016;9:2672–80.

    Article  CAS  Google Scholar 

  18. Wang K, Birjukovs P, Erts D, Phelan R, Morris M, Zhou H, Holmes JD. Synthesis and characterisation of ordered arrays of mesoporous carbon nanofibres. J Mater Chem. 2009;19:1331–8.

    Article  CAS  Google Scholar 

  19. Zhang Y, Zhou K, Zhang LF, Wu HD, Guo J. Synthesis of mesoporous γ-Al2O3 by using cellulose nanofiber as template for hydrodesulfurization of dibenzothiophene. Fuel. 2019;253:431–40.

    Article  CAS  Google Scholar 

  20. Li XY, Chen WC, Qian QR, Huang HT, Chen YM, Wang ZQ, Chen QH, Yang J, Li J, Mai YW. Electrospinning-based strategies for battery materials. Adv Energy Mater. 2021;11:2000845.

    Article  CAS  Google Scholar 

  21. Xue JJ, Wu T, Dai YQ, Xia YN. Electrospinning and electrospun NFS: methods, materials, and applications. Chem Rev. 2019;119:5298–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shi S, Si YF, Han YT, Wu T, Iqbal MI, Fei B, Li RKY, Hu JL, Qu JP. Recent progress in protective membranes fabricated via electrospinning: advanced materials, biomimetic structures, and functional applications. Adv Mater. 2022;34:2107938.

    Article  CAS  Google Scholar 

  23. Dou YB, Zhang WJ, Kaiser A. Electrospinning of metal–organic frameworks for energy and environmental applications. Adv Sci. 2020;7:1902590.

    Article  CAS  Google Scholar 

  24. Sarkar K, Gomez C, Zambrano S, Ramirez M, de Hoyos E, Vasquez H, Lozano K. Electrospinning to forcespinning™. Mater Today. 2010;13:12–4.

    Article  CAS  Google Scholar 

  25. Tebyetekerwa M, Ramakrishna S. What is next for electrospinning? Matter. 2020;2:279–83.

    Article  CAS  Google Scholar 

  26. Li CP, Qiu M, Li RL, Li X, Wang MX, He JB, Lin GG, Xiao LR, Qian QR, Chen QH, Wu JX, Li XY, Mai YW, Chen YM. Electrospinning engineering enables high-performance sodium-ion batteries. Adv Fiber Mater. 2022;4:43–65.

    Article  CAS  Google Scholar 

  27. Chinnappan BA, Krishnaswamy M, Xu H, Hoque ME. Electrospinning of biomedical NFs/nanomembranes: effects of process parameters. Polymers. 2022;14:3719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Saleh M, Demir D, Ozay Y, Yalvac M, Bolgen N, Dizge N. Fabrication of basalt embedded composite fiber membrane using electrospinning method and response surface methodology. J Appl Polym Sci. 2021;138:50599.

    Article  CAS  Google Scholar 

  29. Rasekh A, Raisi A. Electrospun nanofibrous polyether-block-amide membrane containing silica nanoparticles for water desalination by vacuum membrane distillation. Sep Purif Technol. 2021;275: 119149.

    Article  CAS  Google Scholar 

  30. Yang YT, Du YZ, Zhang J, Zhang H, Guo B. Structural and functional design of electrospun NFs for hemostasis and wound healing. Adv Fiber Mater. 2022;4:1027–57.

    Article  CAS  Google Scholar 

  31. Liu DP, Shi QQ, Jin S, Shao YL, Huang J. Self-assembled core-shell structured organic NFs fabricated by single-nozzle electrospinning for highly sensitive ammonia sensors. InfoMat. 2019;1:525–32.

    Article  CAS  Google Scholar 

  32. Sadeghi SAM, Borhani S, Zadhoush A, Dinari M. Single nozzle electrospinning of encapsulated epoxy and mercaptan in PAN for self-healing application. Polymer. 2020;186: 122007.

    Article  Google Scholar 

  33. Hou HL, Wang L, Gao FM, Wei GD, Tang B, Yang WY, Wu T. General strategy for fabricating thoroughly mesoporous NFs. J Am Chem Soc. 2014;136:16716–9.

    Article  CAS  PubMed  Google Scholar 

  34. Ren XL, Hou HL, Liu ZX, Gao FM, Zheng JJ, Wang L, Li WG, Ying PZ, Yang Wy WT. Shape-enhanced photocatalytic activities of thoroughly mesoporous ZnO NFs. Small. 2016;12:4007–17.

    Article  CAS  PubMed  Google Scholar 

  35. Liu HB, Hou HL, Gao FM, Yao XH, Yang WY. Tailored fabrication of thoroughly mesoporous BiVO4 NFs and their visible-light photocatalytic activities. ACS Appl Mater Interfaces. 2016;8:1929–36.

    Article  CAS  PubMed  Google Scholar 

  36. Hou HL, Gao FM, Shang MH, Wang L, Zheng JJ, Liu Q, Yang ZB, Xu JH, Yang WY. Enhanced visible-light responsive photocatalytic activity of N-doped TiO2 thoroughly mesoporous NFs. J Mater Sci Mater Electron. 2016;28:3796–805.

    Article  Google Scholar 

  37. Hou HL, Wang L, Gao FM, Yang XF, Yang WY. BiVO4@TiO2 core–shell hybrid mesoporous NFs towards efficient visible-light-driven photocatalytic hydrogen production. J Mater Chem C. 2019;7:7858–64.

    Article  CAS  Google Scholar 

  38. Hou HL, Shang MH, Gao FM, Wang L, Liu Q, Zheng JJ, Yang ZB, Yang WY. Highly efficient photocatalytic hydrogen evolution in ternary hybrid TiO2/CuO/Cu thoroughly mesoporous NFs. ACS Appl Mater Interfaces. 2016;8:20128–37.

    Article  CAS  PubMed  Google Scholar 

  39. Hou HL, Gao FM, Wang L, Shang MH, Yang ZB, Zheng JJ, Yang WY. Superior thoroughly mesoporous ternary hybrid photocatalysts of TiO2/WO3/g-C3N4 NFs for visible-light-driven hydrogen evolution. J Mater Chem A. 2016;4:6276–81.

    Article  CAS  Google Scholar 

  40. Rezabeigi E, Wood-Adams PM, Demarquette NR. Complex morphology formation in electrospinning of binary and ternary poly(lactic acid) solutions. Macromolecules. 2018;51:4094–107.

    Article  CAS  Google Scholar 

  41. Pai CL, Boyce MC, Rutledge GC. Morphology of porous and wrinkled fibers of polystyrene electrospun from dimethylformamide. Abstr Pap Am Chem Soc. 2009;238:215–32.

    Google Scholar 

  42. Lin JY, Ding B, Yu JY, Hsieh Y. Direct fabrication of highly nanoporous polystyrene fibers via electrospinning. ACS Appl Mater Interfaces. 2010;2:521–8.

    Article  CAS  PubMed  Google Scholar 

  43. Bae HS, Haider A, Selim KMK, Kang DY, Kim EJ, Kang IK. Fabrication of highly porous PMMA electrospun fibers and their application in the removal of phenol and iodine. J Polym Res. 2013;20:158.

    Article  Google Scholar 

  44. Dayal P, Liu J, Kumar S, Kyu T. Experimental and theoretical investigations of porous structure formation in electrospun fibers. Macromolecules. 2007;40:7689–94.

    Article  CAS  Google Scholar 

  45. Celebioglu A, Uyar T. Electrospun porous cellulose acetate fibers from volatile solvent mixture. Mater Lett. 2011;65:2291–4.

    Article  CAS  Google Scholar 

  46. McCann JT, Marquez M, Xia YN. Highly porous fibers by electrospinning into a cryogenic liquid. J Am Chem Soc. 2006;128:1436–7.

    Article  CAS  PubMed  Google Scholar 

  47. Pai CL, Boyce MC, Rutledge GC. Morphology of porous and wrinkled fibers of polystyrene electrospun from dimethylformamide. Macromolecules. 2009;42:2102–14.

    Article  CAS  Google Scholar 

  48. Fashandi H, Ghomi A. Interplay of phase separation and physical gelation in morphology evolution within nanoporous fibers electrospun at high humidity atmosphere. Ind Eng Chem Res. 2015;54:240–53.

    Article  CAS  Google Scholar 

  49. Lu P, Xia YN. Maneuvering the internal porosity and surface morphology of electrospun polystyrene yarns by controlling the solvent and relative humidity. Langmuir. 2013;29:7070–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fashandi H, Karimi M. Comparative studies on the solvent quality and atmosphere humidity for electrospinning of nanoporous polyetherimide fibers. Ind Eng Chem Res. 2014;53:235–45.

    Article  CAS  Google Scholar 

  51. Shu DK, Xi P, Li SW, Li CC, Wang XQ, Cheng BW. Morphologies and properties of pet nano porous luminescence fiber: oil absorption and fluorescence-indicating functions. ACS Appl Mater Interfaces. 2018;10:2828–36.

    Article  CAS  PubMed  Google Scholar 

  52. Qi ZH, Yu H, Chen YM, Zhu MF. Highly porous fibers prepared by electrospinning a ternary system of nonsolvent/solvent/poly(l-lactic acid). Mater Lett. 2009;63:415–8.

    Article  CAS  Google Scholar 

  53. Yu XL, Xiang HF, Long YH, Zhao N, Zhang XL, Xu JA. Preparation of porous polyacrylonitrile fibers by electrospinning a ternary system of PAN/DMF/H2O. Mater Lett. 2010;64:2407–9.

    Article  CAS  Google Scholar 

  54. Nayani K, Katepalli H, Sharma CS, Sharma A, Patil S, Venkataraghavan R. Electrospinning combined with nonsolvent-induced phase separation to fabricate highly porous and hollow submicrometer polymer fibers. Ind Eng Chem Res. 2012;51:1761–6.

    Article  CAS  Google Scholar 

  55. Chen PY, Tung SH. One-step electrospinning to produce nonsolvent-induced macroporous fibers with ultrahigh oil adsorption capability. Macromolecules. 2017;50:2528–34.

    Article  CAS  Google Scholar 

  56. Yang PD, Zhao DY, Chmelka BF, Stucky GD. Triblock-copolymer-directed syntheses of large-pore mesoporous silica fibers. Chem Mater. 1998;10:2033–6.

    Article  CAS  Google Scholar 

  57. Chuang YJ, Liao JD, Chen LJ. Polyvinylbutyral-assisted synthesis and characterization of mesoporous silica NFs by electrospinning route. J Compos Mater. 2011;46:227–36.

    Article  Google Scholar 

  58. He HY, Wang J, Li X, Zhang XW, Weng WJ, Han GR. Silica NFs with controlled mesoporous structure via electrospinning: from random to orientated. Mater Lett. 2013;94:100–3.

    Article  CAS  Google Scholar 

  59. Ma ZJ, Ji HJ, Teng Y, Dong GP, Zhou JJ, Tan DZ, Qiu JR. Engineering and optimization of nano- and mesoporous silica fibers using sol-gel and electrospinning techniques for sorption of heavy metal ions. J Colloid Interface Sci. 2011;358:547–53.

    Article  CAS  PubMed  Google Scholar 

  60. Saha J, De G. Highly ordered cubic mesoporous electrospun SiO2 NFs. Chem Commun. 2013;49:6322–4.

    Article  CAS  Google Scholar 

  61. Taha AA, Qiao JL, Li FT, Zhang BR. Preparation and application of amino functionalized mesoporous NFs membrane via electrospinning for adsorption of Cr3+ from aqueous solution. J Environ Sci. 2012;24:610–6.

    Article  CAS  Google Scholar 

  62. Wang HQ, Zhang CF, Chen ZX, Liu HK, Guo ZP. Large-scale synthesis of ordered mesoporous carbon fiber and its application as cathode material for lithium–sulfur batteries. Carbon. 2015;81:782–7.

    Article  CAS  Google Scholar 

  63. An GH, Koo BR, Ahn HJ. Activated mesoporous carbon NFs fabricated using water etching-assisted templating for high-performance electrochemical capacitors. Phys Chem Chem Phys. 2016;18:6587–94.

    Article  CAS  PubMed  Google Scholar 

  64. Zhang W, Zhu R, Ke L, Liu XZ, Liu B, Ramakrishna S. Anatase mesoporous TiO2 NFs with high surface area for solid-state dye-sensitized solar cells. Small. 2010;6:2176–82.

    Article  CAS  PubMed  Google Scholar 

  65. Nguyen TA, Jun TS, Rashid M, Kim YS. Synthesis of mesoporous tungsten oxide NFs using the electrospinning method. Mater Lett. 2011;65:2823–5.

    Article  CAS  Google Scholar 

  66. Shen JY, Li ZH, Wu YN, Zhang BR, Li FT. Dendrimer-based preparation of mesoporous alumina NFs by electrospinning and their application in dye adsorption. Chem Eng J. 2015;264:48–55.

    Article  CAS  Google Scholar 

  67. Li ZP, Fan YJ, Zhan JH. In2O3 NFs and nanoribbons: preparation by electrospinning and their formaldehyde gas-sensing properties. Eur J Inorg Chem. 2010;2010:3348–53.

    Article  Google Scholar 

  68. Lin YP, Chen YY, Lee YC, Chen-Yang YW. Effect of wormhole-like mesoporous anatase TiO2 NFs prepared by electrospinning with ionic liquid on dye-sensitized solar cells. J Phys Chem C. 2012;116:13003–12.

    Article  CAS  Google Scholar 

  69. Su Y, Fu B, Yuan GL, Ma M, Jin HY, Xie SH, Li JY. Three dimensional mesoporous gamma-Fe2O3@carbon NFs network as high performance anode material for lithium- and sodium-ion batteries. Nanotechnol. 2019;31: 155401.

    Article  Google Scholar 

  70. Wang Y, Li W, Jiao XL, Chen DR. Electrospinning preparation and adsorption properties of mesoporous alumina fibers. J Mater Chem A. 2013;1:10720–6.

    Article  CAS  Google Scholar 

  71. Yu D, Chen CG, Xie SH, Liu YY, Park K, Zhou XY, Zhang QF, Li JY, Cao GZ. Mesoporous vanadium pentoxide NFs with significantly enhanced Li-ion storage properties by electrospinning. Energy Environ Sci. 2011;4:858–61.

    Article  CAS  Google Scholar 

  72. Taek Jung K, Chu YH, Haam S, Gun SY. Synthesis of mesoporous silica fiber using spinning method. J Non Cryst Solids. 2002;298:193–201.

    Article  Google Scholar 

  73. Choi J, Ide A, Truong YB, Kyratzis IL, Caruso RA. High surface area mesoporous titanium–zirconium oxide nanofibrous web: a heavy metal ion adsorbent. J Mater Chem A. 2013;1:5847–53.

    Article  CAS  Google Scholar 

  74. Wang J, Shen LF, Li HS, Ding B, Nie P, Dou H, Zhang XG. Mesoporous Li4Ti5O12/carbon NFs for high-rate lithium-ion batteries. J Alloys Compd. 2014;587:171–6.

    Article  CAS  Google Scholar 

  75. Huang YP, Miao YE, Tjiu WW, Liu TX. High-performance flexible supercapacitors based on mesoporous carbon NFs/Co3O4/MnO2 hybrid electrodes. RSC Adv. 2015;5:18952–9.

    Article  CAS  Google Scholar 

  76. Irani M, Keshtkar AR, Moosavian MA. Removal of cadmium from aqueous solution using mesoporous PVA/TEOS/APTES composite NFs prepared by sol–gel/electrospinning. Chem Eng J. 2012;200–202:192–201.

    Article  Google Scholar 

  77. Pradhan AC, Senthamizhan A, Uyar T. Electrospun mesoporous composite CuO−Co3O4/N- TiO2 NFs as efficient visible light photocatalysts. ChemistrySelect. 2017;2:7031–43.

    Article  CAS  Google Scholar 

  78. Xie JS, Wu QS, Zhao DF. Electrospinning synthesis of ZnFe2O4/Fe3O4/Ag nanoparticle-loaded mesoporous carbon fibers with magnetic and photocatalytic properties. Carbon. 2012;50:800–7.

    Article  CAS  Google Scholar 

  79. Yu G, Zhu LY, Wang XQ, Liu JR, Xu D. Fabrication of silica-supported ZrO2 mesoporous fibers with high thermal stability by sol–gel method through a controlled hydrolysis–condensation process. Micropor Mesopor Mater. 2010;130:189–96.

    Article  CAS  Google Scholar 

  80. Qiu PP, Xu BQ, Sun ZQ, Zhao T, Fan YC, Zhao YY, Yang JP, Wang LJ, Jiang W, Zhu XH, Li XP, Zhu GH, Fang Y, Zhang ZL, Gu CF, Luo W. Oriented assembly of monomicelles in beam stream enabling bimodal mesoporous metal oxide nanofibers. Sci China Mater. 2021;64:2486–96.

    Article  CAS  Google Scholar 

  81. Zou YD, Zhou XR, Zhu YH, Cheng XW, Zhao DY, Deng YH. sp2-hybridized carbon-containing block copolymer templated synthesis of mesoporous semiconducting metal oxides with excellent gas sensing property. Acc Chem Res. 2019;52:714–25.

    Article  CAS  PubMed  Google Scholar 

  82. Pastoriza-Santos I, Liz-Marzán LM. Formation of PVP-protected metal nanoparticles in DMF. Langmuir. 2002;18:2888–94.

    Article  CAS  Google Scholar 

  83. Wu DS, Cao MN, Cao R. Replacing PVP by macrocycle cucurbit[6]uril to cap sub-5 nm Pd nanocubes as highly active and durable catalyst for ethanol electrooxidation. Nano Res. 2019;12:2628–33.

    Article  CAS  Google Scholar 

  84. Yang PD, Zhao DY, Margolese DI, Chmelka BF, Stucky GD. Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework. Chem Mater. 1999;11:2813–26.

    Article  CAS  Google Scholar 

  85. Qiu PP, Yao Y, Li W, Sun Y, Jiang Z, Mei BB, Gu L, Zhang QH, Shang TT, Yu XQ, Yang JP, Fang Y, Zhu GH, Zhang ZL, Zhu XH, Zhao T, Jiang W, Fan YC, Wang LJ, Ma B, Liu LL, Yu Y, Luo W. Sub-nanometric manganous oxide clusters in nitrogen doped mesoporous carbon nanosheets for high-performance lithium-sulfur batteries. Nano Lett. 2021;21:700–8.

    Article  CAS  PubMed  Google Scholar 

  86. Ordanini S, Cellesi F. Complex polymeric architectures self-assembling in unimolecular micelles: preparation, characterization and drug nanoencapsulation. Pharm. 2018;10:209.

    CAS  Google Scholar 

  87. Zhu YH, Zhao Y, Ma JH, Cheng XW, Xie J, Xu PC, Liu HQ, Liu HP, Zhang HJ, Wu MH, Elzatahry AA, Alghamdi A, Deng YH, Zhao DY. Mesoporous tungsten oxides with crystalline framework for highly sensitive and selective detection of foodborne pathogens. J Am Chem Soc. 2017;139:10365–73.

    Article  CAS  PubMed  Google Scholar 

  88. Gu CF, Fan XS, Zhu GH, Fan YC, Wang HF, Zhao T, Xiao Q, Fang Y, Li XP, Jiang W, Wang LJ, Qiu PP, Luo W. Self-organization of unimolecular micelles in beam stream for functional mesoporous metal oxide nanofibers. Fundametnal Res. 2021;2:776–82.

    Article  Google Scholar 

  89. Chattopadhyay S, Bysakh S, Mishra PM, De G. In situ synthesis of mesoporous TiO2 NFs surface-decorated with AuAg alloy nanoparticles anchored by heterojunction exhibiting enhanced solar active photocatalysis. Langmuir. 2019;35:14364–75.

    Article  CAS  PubMed  Google Scholar 

  90. Lin JY, Shang YW, Ding B, Yang JM, Yu JY, Al-Deyab SS. Nanoporous polystyrene fibers for oil spill cleanup. Mar Pollut Bull. 2012;64:347–52.

    Article  CAS  PubMed  Google Scholar 

  91. Wu J, Wang N, Wang L, Dong H, Zhao Y, Jiang L. Electrospun porous structure fibrous film with high oil adsorption capacity. ACS Appl Mater Interfaces. 2012;4:3207–12.

    Article  CAS  PubMed  Google Scholar 

  92. Topuz F, Abdulhamid MA, Nunes SP, Szekely G. Hierarchically porous electrospun nanofbrous mats produced from intrinsically microporous fuorinated polyimide for the removal of oils and non-polar solvents. Environ Sci Nano. 2020;7:1365–72.

    Article  CAS  Google Scholar 

  93. Vu D, Li Z, Zhang H, Wang W, Wang Z, Xu X, Dong B, Wang C. Adsorption of Cu(II) from aqueous solution by anatase mesoporous TiO2 nanofibers prepared via electrospinning. J Colloid Interf Sci. 2012;367:429–35.

    Article  CAS  Google Scholar 

  94. Xu C, Shi S, Wang X, Zhou H, Wang L, Zhu L, Zhang G, Xu D. Electrospun SiO2-MgO hybrid fibers for heavy metal removal: characterization and adsorption study of Pb(II) and Cu(II). J Hazardous Mater. 2020;381: 120974.

    Article  CAS  Google Scholar 

  95. Huang C, Thomas NL. Fabrication of porous fibers via electrospinning: strategies and applications. Polym Rev. 2019;60:595.

    Article  Google Scholar 

  96. Yan JH, Dong KQ, Zhang YY, Wang X, Aboalhassan AA, Yu JY, Ding B. Multifunctional flexible membranes from sponge-like porous carbon nanofibers with high conductivity. Nat Commun. 2019;10:5584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Peng C, Zhang JL, Xiong ZG, Zhao BH, Liu PC. Fabrication of porous hollow γ-Al2O3 nanofibers by facile electrospinning and its application for water remediation. Micropor Mesopor Mater. 2015;215:133–42.

    Article  CAS  Google Scholar 

  98. Li ZY, Zhang HN, Zheng W, Wang W, Huang HM, Wang C, MacDiarmid AG, Wei Y. Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun NFs. J Am Chem Soc. 2008;130:5036–7.

    Article  CAS  PubMed  Google Scholar 

  99. Mondal K, Ali MA, Agrawal VV, Malhotra BD, Sharma A. Highly sensitive biofunctionalized mesoporous electrospun TiO(2) NFs based interface for biosensing. ACS Appl Mater Interfaces. 2014;6:2516–27.

    Article  CAS  PubMed  Google Scholar 

  100. Yang DY, Liu X, Jin Y, Zhu Y, Zeng DD, Jiang XY, Ma HW. Electrospinning of poly(dimethylsiloxane)/poly(methyl methacrylate) nanofibrous membrane: fabrication and application in protein microarrays. Biomacromol. 2009;10:3335–40.

    Article  CAS  Google Scholar 

  101. Tsou PH, Chou CK, Saldana SM, Hung MC, Kameoka J. The fabrication and testing of electrospun silica NFs membranes for the detection of proteins. Nanotechnol. 2008;19: 445714.

    Article  Google Scholar 

  102. Yang G, Kampstra KL, Abidian MR. High Performance conducting polymer NFs biosensors for detection of biomolecules. Adv Mater. 2014;26:4954–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhou CY, Xu L, Song J, Xing RQ, Xu S, Liu DL, Song HW. Ultrasensitive non-enzymatic glucose sensor based on three-dimensional network of ZnO-CuO hierarchical nanocomposites by electrospinning. Sci Rep. 2014;4:7382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang ZJ, Li ZY, Jiang TT, Xu XR, Wang C. Ultrasensitive hydrogen sensor based on Pd(0)-loaded SnO2 electrospun NFs at room temperature. ACS Appl Mater Interfaces. 2013;5:2013–21.

    Article  CAS  PubMed  Google Scholar 

  105. Gao J, Wang LL, Kan K, Xu S, Jing LQ, Liu SQ, Shen PK, Li L, Shi KY. One-step synthesis of mesoporous Al2O3–In2O3 nanofibres with remarkable gas-sensing performance to NOx at room temperature. J Mater Chem A. 2014;2:949–56.

    Article  CAS  Google Scholar 

  106. Li M, Zhang J, Zhang H, Liu Y, Wang C, Xu X, Tang Y, Yang B. Electrospinning: a facile method to disperse fluorescent quantum dots in nfs without förster resonance energy transfer. Adv Funct Mater. 2007;17:3650–6.

    Article  Google Scholar 

  107. Wu H, Sun Y, Lin DD, Zhang R, Zhang C, Pan W. GaN NFs based on electrospinning: facile synthesis, controlled assembly, precise doping, and application as high performance UV photodetector. Adv Mater. 2009;21:227–31.

    Article  Google Scholar 

  108. Mali SS, Kim H, Jang WY, Park HS, Patil PS, Hong CK. Novel synthesis and characterization of mesoporous ZnO NFs by electrospinning technique. ACS Sustain Chem Eng. 2013;1:1207–13.

    Article  CAS  Google Scholar 

  109. Hsu KC, Liao JD, Yang JR, Fu YS. Cellulose acetate assisted synthesis and characterization of kesterite quaternary semiconductor Cu2ZnSnS4 mesoporous fibers by an electrospinning process. CrystEngComm. 2013;15:4303–8.

    Article  CAS  Google Scholar 

  110. Chattopadhyay S, Maiti S, Das I, Mahanty S, De G. Electrospun TiO2-rGO composite NFs with ordered mesopores by molecular level assembly: a high performance anode material for Lithium-Ion batteries. Adv Mater Interfaces. 2016;3:1600761.

    Article  Google Scholar 

  111. Cao ZH, Wang CQ, Chen J. Novel mesoporous carbon NFs prepared via electrospinning method as host materials for Li-S battery. Mater Lett. 2018;225:157–60.

    Article  CAS  Google Scholar 

  112. An GH, Lee DY, Ahn HJ. Tunneled mesoporous carbon NFs with embedded ZnO nanoparticles for ultrafast lithium storage. ACS Appl Mater Interfaces. 2017;9:12478–85.

    Article  CAS  PubMed  Google Scholar 

  113. Cheong JY, Jung JW, Youn DY, Kim C, Yu S, Cho SH, Yoon KR, Kim ID. Mesoporous orthorhombic Nb2O5 NFs as pseudocapacitive electrodes with ultra-stable Li storage characteristics. J Power Sources. 2017;360:434–42.

    Article  CAS  Google Scholar 

  114. Gong ZJ, Wu QX, Wang F, Li X, Fan XP, Yang H, Luo ZK. A hierarchical micro/mesoporous carbon fiber/sulfur composite for high-performance lithium–sulfur batteries. RSC Adv. 2016;6:37443–51.

    Article  CAS  Google Scholar 

  115. He B, Wang J, Fan YQ, Jiang YL, Zhai YJ, Wang Y, Huang QS, Dang F, Zhang ZD, Wang N. Mesoporous CoO/Co–N–C NFs as efficient cathode catalysts for Li–O2 batteries. J Mater Chem A. 2018;6:19075–84.

    Article  CAS  Google Scholar 

  116. Hu S, Chen W, Uchaker E, Zhou J, Cao GZ. Mesoporous carbon NFs embedded with MoS2 nanocrystals for extraordinary Li-ion storage. Chem. 2015;21:18248–57.

    Article  CAS  Google Scholar 

  117. Lee DJ, Lee H, Ryou MH, Han GB, Lee JN, Song JC, Choi J, Cho YK, Lee YM, Park JK. Electrospun three-dimensional mesoporous silicon NFs as an anode material for high-performance lithium secondary batteries. ACS Appl Mater Interfaces. 2013;5:12005–10.

    Article  CAS  PubMed  Google Scholar 

  118. Li DH, Lv CX, Liu L, Xia YZ, She XL, Guo SJ, Yang DJ. Egg-box structure in cobalt alginate: a new approach to multifunctional hierarchical mesoporous N-doped carbon NFs for efficient catalysis and energy storage. ACS Cent Sci. 2015;1:261–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Li XH, Zhou BM, Wang W, Xu ZW, Li N, Kuang LY, Li CY, Wei M, Hj Fu, Lv HM. Superior cyclability of branch-like TiO2 embedded on the mesoporous carbon NFs as free-standing anodes for lithium-ion batteries. J Alloys Compd. 2017;706:103–9.

    Article  CAS  Google Scholar 

  120. Lou LZ, Kong XZ, Zhu T, Liang LJD, Liu SQ, F, Cao GZ, Pan AQ. Facile fabrication of interconnected-mesoporous T-Nb2O5 NFs as anodes for lithium-ion batteries. Sci China Mater. 2018;62:465–73.

    Article  Google Scholar 

  121. Li YZ, Wang HW, Wang LB, Mao ZF, Wang R, He BB, Gong YS, Hu XL. Mesopore-induced ultrafast Na+ -storage in T-Nb2O5 /carbon NFs films toward flexible high-power Na-ion capacitors. Small. 2019;15: e1804539.

    Article  PubMed  Google Scholar 

  122. Liu H, Liu YH. 1D mesoporous NaTi2(PO4)3/carbon NFs: the promising anode material for sodium-ion batteries. Ceram Int. 2018;44:5813–6.

    Article  CAS  Google Scholar 

  123. Wang YP, Zhang YF, Shi JR, Kong XZ, Cao XX, Liang SQ, Cao GZ, Pan AQ. Tin sulfide nanoparticles embedded in sulfur and nitrogen dual-doped mesoporous carbon fibers as high-performance anodes with battery-capacitive sodium storage. Energy Stor Mater. 2019;18:366–74.

    Google Scholar 

  124. Yu ML, Yin ZL, Yan GC, Wang ZX, Guo HJ, Li GC, Liu Y, Wang JX. Synergy of interlayer expansion and capacitive contribution promoting sodium ion storage in S, N-Doped mesoporous carbon NFs. J Power Sources. 2019;449: 227514.

    Article  Google Scholar 

  125. Li CL, Wu MC, Liu R. High-performance bifunctional oxygen electrocatalysts for zinc-air batteries over mesoporous Fe/Co-N-C NFs with embedding FeCo alloy nanoparticles. Appl Catal B Environ. 2019;244:150–8.

    Article  CAS  Google Scholar 

  126. Li CL, Zhang ZJ, Wu MC, Liu R. FeCoNi ternary alloy embedded mesoporous carbon NFs: an efficient oxygen evolution catalyst for rechargeable zinc-air battery. Mater Lett. 2019;238:138–42.

    Article  CAS  Google Scholar 

  127. Yu GH, Hu LB, Vosgueritchian M, Wang HL, Xie X, McDonough JR, Cui X, Cui Y, Bao ZN. Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett. 2011;11:2905–11.

    Article  CAS  PubMed  Google Scholar 

  128. Zhao HP, Liu L, Vellacheri R, Lei Y. Recent advances in designing and fabricating self-supported nanoelectrodes for supercapacitors. Adv Sci. 2017;4:1700188.

    Article  Google Scholar 

  129. Wang FX, Wu XW, Yuan XH, Liu ZC, Zhang Y, Fu LJ, Zhu YS, Zhou QM, Wu YP, Huang W. Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem Soc Rev. 2017;46:6816–54.

    Article  CAS  PubMed  Google Scholar 

  130. Bhagwan J, Rani S, Sivasankaran V, Yadav KL, Sharma Y. Improved energy storage, magnetic and electrical properties of aligned, mesoporous and high aspect ratio NFs of spinel-NiMn2O4. Appl Surf Sci. 2017;426:913–23.

    Article  CAS  Google Scholar 

  131. Cui CJ, Qian WZ, Yu YT, Kong CY, Yu B, Xiang L, Wei F. Highly electroconductive mesoporous graphene NFs and their capacitance performance at 4 V. J Am Chem Soc. 2014;136:2256–9.

    Article  CAS  PubMed  Google Scholar 

  132. Dong WJ, Wang Z, Zhang Q, Ravi M, Yu MM, Tan YT, Liu Y, Kong LB, Kang L, Ran F. Polymer/block copolymer blending system as the compatible precursor system for fabrication of mesoporous carbon NFs for supercapacitors. J Power Sources. 2019;419:137–47.

    Article  CAS  Google Scholar 

  133. Ghosh S, Yong WD, Jin EM, Polaki SR, Jeong SM, Jun H. Mesoporous carbon NFs engineered for improved supercapacitor performance. Korean J Chem Eng. 2019;36:312–20.

    Article  Google Scholar 

  134. Jiang ZM, Xu TT, Dai SG, Yan CC, Ma CY, Wang XC, Xu JM, Zhang S, Yang Y. 3D Mesoporous Ni(OH)2 /WS2 NFs with highly enhanced performances for hybrid supercapacitors. Energy Technol. 2019;7:1800476.

    Article  Google Scholar 

  135. Kim BH, Kim CH, Lee DG. Mesopore-enriched activated carbon NFs web containing RuO2 as electrode material for high-performance supercapacitors. J Electroanal Chem. 2016;760:64–70.

    Article  CAS  Google Scholar 

  136. Kim BH, Yang KS, Ferraris JP. Highly conductive, mesoporous carbon NFs web as electrode material for high-performance supercapacitors. Electrochim Acta. 2012;75:325–31.

    Article  CAS  Google Scholar 

  137. Liang QH, Ye L, Xu Q, Huang ZH, Kang FY, Yang QH. Graphitic carbon nitride nanosheet-assisted preparation of N-enriched mesoporous carbon NFs with improved capacitive performance. Carbon. 2015;94:342–8.

    Article  CAS  Google Scholar 

  138. Liu ZY, Fu DY, Liu FF, Han GY, Liu CX, Chang YZ, Xiao YM, Li MY, Li SD. Mesoporous carbon NFs with large cage-like pores activated by tin dioxide and their use in supercapacitor and catalyst support. Carbon. 2014;70:295–307.

    Article  CAS  Google Scholar 

  139. Ma C, Sheng J, Ma CL, Wang RR, Liu JQ, Xie ZY, Shi JL. High-performanced supercapacitor based mesoporous carbon NFs with oriented mesopores parallel to axial direction. Chem Eng J. 2016;304:587–93.

    Article  CAS  Google Scholar 

  140. Tan J, Han YL, He L, Dong YX, Xu X, Liu DN, Yan HW, Yu Q, Huang CY, Mai LQ. In situ nitrogen-doped mesoporous carbon NFs as flexible freestanding electrodes for high-performance supercapacitors. J Mater Chem A. 2017;5:23620–7.

    Article  CAS  Google Scholar 

  141. Zeng Y, Li XY, Jiang SH, He SJ, Fang H, Hou HQ. Free-standing mesoporous electrospun carbon NFs webs without activation and their electrochemical performance. Mater Lett. 2015;161:587–90.

    Article  CAS  Google Scholar 

  142. Wang CH, Kaneti YV, Bando Y, Lin JJ, Liu C, Li JS, Yamauchi Y. Metal–organic framework-derived one-dimensional porous or hollow carbon-based NFs for energy storage and conversion. Mater Horizons. 2018;5:394–407.

    Article  CAS  Google Scholar 

  143. Lee G, Seo YD, Jang J. ZnO quantum dot-decorated carbon NFs derived from electrospun ZIF-8/PVA NFs for high-performance energy storage electrodes. Chem Comm. 2017;53:11441–4.

    Article  CAS  PubMed  Google Scholar 

  144. Sun YM, Sills RB, Hu XL, Seh ZW, Xiao X, Xu HH, Luo W, Jin HY, Xin Y, Li TQ, Zhang ZL, Zhou J, Cai W, Huang YH, Cui Y. A bamboo-inspired nanostructure design for flexible, foldable, and twistable energy storage devices. Nano Lett. 2015;15:3899–906.

    Article  CAS  PubMed  Google Scholar 

  145. Tebyetekerwa M, Wang XP, Wu YZ, Yang SY, Zhu MF, Ramakrishna S. Controlled synergistic strategy to fabricate 3D-skeletal hetero-nanosponges with high performance for flexible energy storage applications. J Mater Chem A. 2017;5:21114.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52225204, 52173233, and 52202085), the Innovation Program of Shanghai Municipal Education Commission (2021-01-07-00-03-E00109), Natural Science Foundation of Shanghai (23ZR1479200), “Shuguang Program” supported by the Shanghai Education Development Foundation and Shanghai Municipal Education Commission (20SG33), the Fundamental Research Funds for the Central Universities (2232023G-07) and the DHU Distinguished Young Professor Program (LZA2022001 and LZB2023002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anqi Ju or Wei Luo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, P., Jin, R., Son, Y. et al. Mesoporous Nanofibers from Extended Electrospinning Technique. Adv. Fiber Mater. (2024). https://doi.org/10.1007/s42765-024-00379-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42765-024-00379-8

Keywords

Navigation