Skip to main content
Log in

Electrical conductivity enhancement of polycarbonate/poly(styrene-co-acrylonitril)/carbon nanotube composites by high intensity ultrasound

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Polycarbonate (PC)/poly(styrene-co-acrylonitrile) (SAN)/carbon nanotube (CNT) nanocomposites were prepared using an intensive melt-mixer equipped with an ultrasonic device. The effect of CNT content and sonication time on the electrical conductivity and other properties was investigated by DSC, TGA, rheometer, Izod-impact tester, surface resistivity meter, TEM and SEM. 1 min of sonication could considerably lower the percolation threshold of nanocomposites. Two different methods, a one-pot method and a master batch method, were compared to each other in regard to the effectiveness of CNTs. The expected mechanism of the two methods was proposed. The electrical conductive nanocomposite was obtained with even a small amount of CNTs by using incompatibility between polymers, affinity differences with CNTs, and a proper high-intensity ultrasound together.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Sumita, S. Sakata, S. Asai S, K. Miyasaka, and H. Nakagawa, Polym. Bull., 25, 265 (1991).

    Article  CAS  Google Scholar 

  2. A. Goldel, G. Kasaliwal, and P. Potschke, Macromol. Rapid Commun., 30, 423 (2009).

    Article  Google Scholar 

  3. A. C. Baudouin, J. Devaux, and C. Bailly, Polymer, 51, 1341 (2010).

    Article  CAS  Google Scholar 

  4. Y. Shi, Y. Li, J. Wu, T. Huang, C. Chen, and Y. Peng, J. Polym. Sci. Part B: Polym. Phys., 49, 267 (2011).

    Article  CAS  Google Scholar 

  5. F. Gubbels, R. Jerome, E. Vanlathem, R. Deltour, S. Blaher, and F. Brouers, Chem. Mater., 10, 1227 (1998).

    Article  CAS  Google Scholar 

  6. P. Ptschke, T. D. Fornes, and D. R. Paul, Polymer, 43, 3247 (2002).

    Article  Google Scholar 

  7. P. Ptschke, A. R. Bhattacharyya, and A. Janke, Polymer, 44, 8061 (2003).

    Article  Google Scholar 

  8. P. Ptschke, A. R. Bhattacharyya, and A. Janke, Eur. Polym. J., 40, 137 (2000).

    Article  Google Scholar 

  9. L. Elia, F. Fenouillot, J. C. Majeste, P. Alcouffe, and P. Cassagnau, Polymer, 49, 4378 (2008).

    Article  Google Scholar 

  10. S. Steinmann, W. Gronski, and C. Friedrich, Polymer, 43, 4467 (2002).

    Article  CAS  Google Scholar 

  11. U. Sundararaj and C. W. Macosko, Macromolecules, 28, 2647 (1995).

    Article  CAS  Google Scholar 

  12. T. Y. Hwang, Y. Yoo, and J. W. Lee, Rheol. Acta, 51, 623 (2012).

    Article  CAS  Google Scholar 

  13. T. Y. Hwang, H. J. Kim, Y. Ahn, and J. W. Lee, Korea Aust. Rheol. J., 22, 141 (2010).

    Google Scholar 

  14. M. Kwak, M. Lee, and B. K. Lee, SPE-ANTEC Tech. Papers CD-ROM (2003).

    Google Scholar 

  15. J. S. Oh, A. I. Isayev, and M. A. Rogunova, Polymer, 44, 2337 (2003).

    Article  CAS  Google Scholar 

  16. A. I. Isayev and C. K. Hong, Polym. Eng. Sci., 43, 91 (2003).

    Article  CAS  Google Scholar 

  17. S. Lee, Y. Lee, and J.W. Lee, Macromol. Res., 15, 44 (2007).

    Article  CAS  Google Scholar 

  18. I.-K. Hong and S. Lee, J. Ind. Eng. Chem., 19, 87 (2013).

    Article  CAS  Google Scholar 

  19. K. Y. Kim, G. J. Nam, S. M. Lee, and J. W. Lee, J. Appl. Polym. Sci., 99, 2132 (2006).

    Article  CAS  Google Scholar 

  20. C. Velasco-Santos, A. L. Martínez-Hernández, F. T. Fisher, R. Ruoff, and V. M. Castano, Chem. Mater., 15, 4470 (2003).

    Article  CAS  Google Scholar 

  21. Z. J. Jia, Z. J. Wang, C. L. Xu, J. Liang, B. Q. Wei, D. H. Wu, and S. W. Zhu, Mater. Sci. Eng. A: Struct., 271, 395 (1999).

    Article  Google Scholar 

  22. J. H. Fan, M. X. Wan, D. B. Zhu, B. H. Chang, Z. W. Pan, and S. S. Xie, J. Appl. Polym. Sci., 74, 2605 (1999).

    Article  CAS  Google Scholar 

  23. B. Z. Tang and H. Y. Xu, Macromolecules, 32, 2569 (1999).

    Article  CAS  Google Scholar 

  24. X. L. Xie, X. P. Zhou, J. Tang, H. C. Hu, H. B. Wu, and J. W. Zhang, China Synth. Rubber Ind., 25, 46 (2002).

    CAS  Google Scholar 

  25. J. Jang, J. Bae, and S. H. Yoon, J. Mater. Chem., 13, 676 (2003).

    Article  CAS  Google Scholar 

  26. J. Sandler, M. S. P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, and A. H. Windle, Polymer, 40, 5967 (1999).

    Article  CAS  Google Scholar 

  27. A. C. Baudouin, C. Bailly, and J. Devaux, Polym. Degrad. Stab., 95, 389 (2009).

    Article  Google Scholar 

  28. F. Fenouillot, P. Cassagnau, and J. C. Majeste, Polymer, 50, 1333 (2009).

    Article  CAS  Google Scholar 

  29. K. Jang, J. W. Lee, I.-K. Hong, and S. Lee, Korea-Aust. Rheol. J., in press (2013).

    Google Scholar 

  30. Y. Seo, S. M. Hong, S. S. Hwang, T. S. Park, K. U. Kim, S. Lee, and J. W. Lee, Polymer, 36, 525 (1995).

    Article  CAS  Google Scholar 

  31. Y. Zhao and D. A. Schiraldi, Polymer, 46, 11640 (2005).

    Article  CAS  Google Scholar 

  32. Y. Cui, A. T. Paxon, K. M. Smyth, and K. K. Varanasi, Colloids Surf. A: Physicochem. Eng. Asp., 394, 8 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangmook Lee.

Additional information

The image from this article is used as the cover image of the Volume 22, Issue 2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Lee, J.W., Hong, IK. et al. Electrical conductivity enhancement of polycarbonate/poly(styrene-co-acrylonitril)/carbon nanotube composites by high intensity ultrasound. Macromol. Res. 22, 154–159 (2014). https://doi.org/10.1007/s13233-014-2029-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-014-2029-6

Keywords

Navigation