Skip to main content
Log in

Utilizing interfaces in carbon nanotube reinforced polymer composites for structural damping

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Carbon nanotube reinforced polymer composites have been extensively researched [Shadler LS, Giannaris SC, Ajayan PM (1998) Appl Phys Lett 73:3842; Ajayan PM, Shadler LS, Giannaris C, Rubio A (2000) Adv Mater 12:750; Wagner HD, Lourie O, Feldman Y, Tenne R (1998) Appl Phys Lett 72:188; Thostenson ET, Chou T-W (2002) J Phys D: Appl Phys 35:L77] for their strength and stiffness properties. The interfaces between nanotubes and polymer matrix can play a critical role in nanocomposites for their mechanical properties, since the interfacial area is order of magnitude more than traditional composites. Unless the interface is carefully engineered, poor load transfer between individual nanotubes (in bundles) and between nanotubes and surrounding polymer chains may result in interfacial slippage [Shadler et al. (1998); Ajayan et al. (2000)] and consequently disappointing mechanical stiffness and strength. Interfacial slippage, while detrimental to high stiffness and strength, could result in very high mechanical damping, which is a hugely important attribute in many commercial applications. In this paper, we show that the mechanical damping is related to frictional energy dissipation during interfacial sliding at the extremely many nanotube-polymer interfaces, and characterize the impact of activation of the frictional sliding on damping behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shadler LS, Giannaris SC, Ajayan PM (1998) Appl Phys Lett 73:3842

    Article  Google Scholar 

  2. Ajayan PM, Shadler LS, Giannaris C, Rubio A (2000) Adv Mater 12:750

    Article  CAS  Google Scholar 

  3. Wagner HD, Lourie O, Feldman Y, Tenne R (1998) Appl Phys Lett 72:188

    Article  CAS  Google Scholar 

  4. Thostenson ET, Chou T-W (2002) J Phys D: Appl Phys. 35:L77

    Article  CAS  Google Scholar 

  5. Fisher FT, Bradshaw RD, Brinson LC (2002) Appl Phys Lett 80:4647

    Article  CAS  Google Scholar 

  6. Qian D, Dickey EC, Andrew R, Rantell T (2000) Appl Phys Lett 76:2868

    Article  CAS  Google Scholar 

  7. Thostenson ET, Zhifeng R, Chou T-W (2001) Compos Sci Technol 61:1899

    Article  CAS  Google Scholar 

  8. Li F, Cheng HM, Bai S, Su G, Dresselhaus MS (2000) Appl Phys Lett 77:3161

    Article  CAS  Google Scholar 

  9. Barber A, Cohen S, Wagner HD (2003) Appl Phys Lett 82:4140

    Article  CAS  Google Scholar 

  10. Zhou X, Wang KW, Bakis CE (2003) Compos Sci Technol 64:2425

    Article  Google Scholar 

  11. Suhr J, Koratkar N, Keblinski P, Ajayan PM (2005) Nat Mater 4:134

    Article  CAS  Google Scholar 

  12. Liu A, Huang J, Wang K-W, Bakis CE (2006) J Intel Mater Syst Struct 17:217

    Article  CAS  Google Scholar 

  13. Rajoria H, Jalili N (2005) Compos Sci Technol 645:2079

    Article  Google Scholar 

  14. Eitan A, Fisher FT, Andrews R, Brinson LC, Schadler LS (2006) Compos Sci Technol 66:1162

    Article  CAS  Google Scholar 

  15. Ding W, Eitan A, Fisher F, Chen X, Dikin D, Andrews R, Brinson L, Schadler LS, Ruoff RS (2003) Nano Lett 3:1593

    Article  CAS  Google Scholar 

  16. Painter P, Coleman M (1997) Fundamentals of polymer science. CRC Press, New York

    Google Scholar 

  17. Bower C, Kleinhammes A, Wu Y, Zhou O (1998) Chem Phys Lett 288:481

    Article  CAS  Google Scholar 

  18. Monthioux M, Smith B, Burteaux B, Claye A, Fischer J, Luzzi DE (2001) Carbon 39:1251

    Article  CAS  Google Scholar 

  19. Koratkar NA, Suhr J, Joshi A, Kane RS, Schadler LS, Ajayan PM, Bartolucci S (2005) Appl Phys Lett 87:063102

    Article  Google Scholar 

Download references

Acknowledgement

We acknowledge funding support from the US Army Research Office (Structures and Dynamics Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pulickel M. Ajayan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ajayan, P.M., Suhr, J. & Koratkar, N. Utilizing interfaces in carbon nanotube reinforced polymer composites for structural damping. J Mater Sci 41, 7824–7829 (2006). https://doi.org/10.1007/s10853-006-0693-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0693-4

Keywords

Navigation