Skip to main content
Log in

Scalable synthesis of ultrasmall hybrid silica colloidal particles through balanced solvophobic interaction and electrostatic repulsion

  • Research
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Ultrasmall silica colloid particles (SCPs) show broad applications in various fields, including cosmetics, paint, medicine, and electronics. However, the precise and scalable synthesis of ultrasmall SCPs remains challenging. This study introduces a facile polymer-based strategy for the synthesis of ultrasmall SCPs through the synergistic utilization of solvophobic interactions and electrostatic repulsion. The size of SCPs can be efficiently modulated by the ratio between solvophilic and solvophobic segments within random copolymers. This approach allows for producing SCPs with a diameter of down to 9.6 ± 1.7 nm and a solid content of up to 9.8%. Furthermore, amphiphilic SCPs were obtained by introducing PEO blocks into copolymer templates and modifying with long carbon chain silane coupling agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Ng S, Jelle BP, Sandberg LI, Gao T, Alex MS (2018) Hollow silica nanospheres as thermal insulation materials for construction: Impact of their morphologies as a function of synthesis pathways and starting materials. Constr Build Mater 166:72–80. https://doi.org/10.1016/j.conbuildmat.2018.01.054

    Article  CAS  Google Scholar 

  2. Yang G, Wang Z, Du F, Jiang F, Yuan X, Ying JY (2023) Ultrasmall coinage metal nanoclusters as promising theranostic probes for biomedical applications. J Am Chem Soc 145(22):11879–11898. https://doi.org/10.1021/jacs.3c02880

    Article  CAS  PubMed  Google Scholar 

  3. Ernawati L, Ogi T, Balgis R, Okuyama K, Stucki M, Hess SC et al (2016) Hollow silica as an optically transparent and thermally insulating polymer additive. Langmuir 32(1):338–345. https://doi.org/10.1021/acs.langmuir.5b04063

    Article  CAS  PubMed  Google Scholar 

  4. Huang CC, Huang W, Yeh CS (2011) Shell-by-shell synthesis of multi-shelled mesoporous silica nanospheres for optical imaging and drug delivery. Biomaterials 32(2):556–564. https://doi.org/10.1016/j.biomaterials.2010.08.114

    Article  CAS  PubMed  Google Scholar 

  5. Kuwahara Y, Kango H, Yamashita H (2019) Pd nanoparticles and aminopolymers confined in hollow silica spheres as efficient and reusable heterogeneous catalysts for semihydrogenation of alkynes. ACS Catal 9(3):1993–2006. https://doi.org/10.1021/acscatal.8b04653

    Article  CAS  Google Scholar 

  6. Kang M, Lee J-t, Bae JY (2023) Facile mesoporous hollow silica synthesis for formaldehyde adsorption. Int J Mol Sci 24(4):4208. https://doi.org/10.3390/ijms24044208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu X, Chen Y, Liu H, Liu Z (2017) SiO2@C hollow sphere anodes for lithium-ion batteries. J Mater Sci Technol 33(3):239–245. https://doi.org/10.1016/j.jmst.2016.07.021

    Article  CAS  Google Scholar 

  8. Han Y, Lu Z, Teng Z, Liang J, Guo Z, Wang D et al (2017) Unraveling the growth mechanism of silica particles in the Stöber method: in situ seeded growth model. Langmuir 33(23):5879–5890. https://doi.org/10.1021/acs.langmuir.7b01140

    Article  CAS  PubMed  Google Scholar 

  9. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26(1):62–69. https://doi.org/10.1016/0021-9797(68)90272-5

    Article  Google Scholar 

  10. Bourebrab MA, Oben DT, Durand GG, Taylor PG, Bruce JI, Bassindale AR et al (2018) Influence of the initial chemical conditions on the rational design of silica particles. J Sol-Gel Sci Technol 88(2):430–441. https://doi.org/10.1007/s10971-018-4821-9

    Article  CAS  Google Scholar 

  11. Lei X, Yu B, Cong H-L, Tian C, Wang Y-Z, Wang Q-B et al (2014) Synthesis of monodisperse silica microspheres by a modified Stöber method. Integr Ferroelectr 154(1):142–146. https://doi.org/10.1080/10584587.2014.904651

    Article  CAS  Google Scholar 

  12. Ding HL, Zhang YX, Wang S, Xu JM, Xu SC, Li GH (2012) Fe3O4@SiO2 core/shell nanoparticles: the silica coating regulations with a single core for different core sizes and shell thicknesses. Chem Mater 24(23):4572–4580. https://doi.org/10.1021/cm302828d

    Article  CAS  Google Scholar 

  13. Jin Y, Lohstreter S, Pierce DT, Parisien J, Wu M, Hall C III et al (2008) Silica nanoparticles with continuously tunable sizes: synthesis and size effects on cellular contrast imaging. Chem Mater 20(13):4411–4419. https://doi.org/10.1021/cm8007478

    Article  CAS  Google Scholar 

  14. Wang L, Yang C, Tan W (2005) Dual-luminophore-doped silica nanoparticles for multiplexed signaling. Nano Lett 5(1):37–43. https://doi.org/10.1021/nl048417g

    Article  CAS  PubMed  Google Scholar 

  15. Van Helden AK, Jansen JW, Vrij A (1981) Preparation and characterization of spherical monodisperse silica dispersions in nonaqueous solvents. J Colloid Interface Sci 81(2):354–368. https://doi.org/10.1016/0021-9797(81)90417-3

    Article  Google Scholar 

  16. Yang H, Wang L, Yuan B, Yang K, Ma Y (2015) Adhesion of an ultrasmall nanoparticle on a bilayer membrane is still size and shape dependent. J Mater Sci Technol 31(6):660–663. https://doi.org/10.1016/j.jmst.2014.09.012

    Article  Google Scholar 

  17. Bedrov D, Smith GD, Davande H, Li L (2008) Passive transport of C60 fullerenes through a lipid membrane: a molecular dynamics simulation study. J Phys Chem B 112(7):2078–2084. https://doi.org/10.1021/jp075149c

    Article  CAS  PubMed  Google Scholar 

  18. Zhang X-D, Chen J, Luo Z, Wu D, Shen X, Song S-S et al (2014) Enhanced tumor accumulation of sub-2 nm gold nanoclusters for cancer radiation therapy. Adv Healthcare Mater 3(1):133–141. https://doi.org/10.1002/adhm.201300189

    Article  CAS  Google Scholar 

  19. Amraee A, Alamzadeh Z, Irajirad R, Sarikhani A, Ghaznavi H, Ghadiri Harvani H et al (2023) Theranostic RGD@Fe3O4-Au/Gd NPs for the targeted radiotherapy and MR imaging of breast cancer. Cancer Nanotechnology 14(1):61. https://doi.org/10.1186/s12645-023-00214-6

    Article  CAS  Google Scholar 

  20. Dadfar SM, Roemhild K, Drude NI, von Stillfried S, Knüchel R, Kiessling F et al (2019) Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications. Adv Drug Deliv Rev 138:302–325. https://doi.org/10.1016/j.addr.2019.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pandey S, Choudhary P, Gajbhiye V, Jadhav S, Bodas D (2023) In vivo imaging of prostate tumor-targeted folic acid conjugated quantum dots. Cancer Nanotechnol 14(1):30. https://doi.org/10.1186/s12645-023-00162-1

    Article  CAS  Google Scholar 

  22. Wang F, He M, Huang B, Tang T, Liu F, Cui R et al (2023) Band gap engineering improves three-photon luminescence of quantum dots for deep brain imaging. Anal Chem 95(29):10947–10956. https://doi.org/10.1021/acs.analchem.3c00845

    Article  CAS  PubMed  Google Scholar 

  23. Li J, Pu K (2019) Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation. Chem Soc Rev 48(1):38–71. https://doi.org/10.1039/C8CS00001H

    Article  CAS  PubMed  Google Scholar 

  24. He D-G, He X-X, Wang K-M, Zhao Y-X (2013) A facile route for shape-selective synthesis of silica nanostructures using poly-L-lysine as template. Chin Chem Lett 24(2):99–102. https://doi.org/10.1016/j.cclet.2013.01.038

    Article  CAS  Google Scholar 

  25. Li W, Kuo C-H, Kanyo I, Thanneeru S, He J (2014) Synthesis and self-assembly of amphiphilic hybrid nano building blocks via self-collapse of polymer single chains. Macromolecules 47(17):5932–5941. https://doi.org/10.1021/ma501338s

    Article  CAS  Google Scholar 

  26. Kind L, Plamper FA, Göbel R, Mantion A, Müller AHE, Pieles U et al (2009) Silsesquioxane/polyamine nanoparticle-templated formation of star- or raspberry-like silica nanoparticles. Langmuir 25(12):7109–7115. https://doi.org/10.1021/la900229n

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Y, Yi C, Dong W, Zheng D, Yang Y, Li W et al (2022) Single copolymer chain-templated synthesis of ultrasmall symmetric and asymmetric silica-based nanoparticles. Adv Func Mater 32(20):2112742. https://doi.org/10.1002/adfm.202112742

    Article  CAS  Google Scholar 

  28. Wu C-H, Jeng J-S, Chia J-L, Ding S (2011) Multi-nuclear liquid state NMR investigation of the effects of pH and addition of polyethyleneglycol on the long-term hydrolysis and condensation of tetraethoxysilane. J Colloid Interface Sci 353(1):124–130. https://doi.org/10.1016/j.jcis.2010.09.024

    Article  CAS  PubMed  Google Scholar 

  29. Hench LL, West JK (1990) The sol-gel process. Chem Rev 90(1):33–72. https://doi.org/10.1021/cr00099a003

    Article  CAS  Google Scholar 

  30. Echeverría JC, Moriones P, Arzamendi G, Garrido JJ, Gil MJ, Cornejo A et al (2018) Kinetics of the acid-catalyzed hydrolysis of tetraethoxysilane (TEOS) by 29Si NMR spectroscopy and mathematical modeling. J Sol-Gel Sci Technol 86(2):316–328. https://doi.org/10.1007/s10971-018-4637-7

    Article  CAS  Google Scholar 

  31. Cihlář J (1993) Hydrolysis and polycondensation of ethyl silicates. 1. Effect of pH and catalyst on the hydrolysis and polycondensation of tetraethoxysilane (TEOS). Colloids Surf A: Physicochem Eng Aspects 70(3):239–251. https://doi.org/10.1016/0927-7757(93)80298-S

    Article  Google Scholar 

  32. Harris MT, Brunson RR, Byers CH (1990) The base-catalyzed hydrolysis and condensation reactions of dilute and concentrated TEOS solutions. J Non-Cryst Solids 121(1):397–403. https://doi.org/10.1016/0022-3093(90)90165-I

    Article  CAS  Google Scholar 

  33. Liang X, Lian L, Liu Y, Kong Q, Wang L (2016) Controlled synthesis of monodisperse silica particles. Micro Nano Lett 11(9):532–534. https://doi.org/10.1049/mnl.2016.0189

    Article  CAS  Google Scholar 

Download references

Funding

This work is financially supported by the National Natural Science Foundation of China (grant 91963107, 52125308), the Innovation Program of Shanghai Municipal Education Commission (2021-01-07-00-07-E00073), the National Key R & D Program of China (2022YFA1404700), and the Shanghai Pujiang Program (23PJ1401000).

Author information

Authors and Affiliations

Authors

Contributions

This work was performed by Z. Q. Liu under the guidance of Y. T. Sang and Z. H. Nie.

Corresponding authors

Correspondence to Yutao Sang or Zhihong Nie.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3706 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Zhang, Y., Sang, Y. et al. Scalable synthesis of ultrasmall hybrid silica colloidal particles through balanced solvophobic interaction and electrostatic repulsion. Colloid Polym Sci (2024). https://doi.org/10.1007/s00396-024-05258-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00396-024-05258-7

Keywords

Navigation