Skip to main content
Log in

Orientation and deformation of wet-stretched all-cellulose nanocomposites

  • Polymer Fibers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Cellulose nanowhiskers (CNWs) are used to reinforce an all-cellulose composite. This composite comprises a matrix formed by dissolution of plant cellulose using a lithium chloride/N,N-dimethylacetamide solvent system into which high stiffness CNWs are dispersed. It is shown that the Young’s modulus and strength of the composites decrease dramatically when the material is wetted. Raman spectroscopy is used to show how the two bands located at 1095 and 895 cm−1 can be used to follow both the molecular deformation and orientation of the CNWs and the matrix phases, respectively, both in the wet and dry states. The disruption of the stress transfer process is observable via the lack of shift in the position of both Raman peaks upon deformation in the wet state. This shift is restored when the samples are dried, and some recovery is noted in the materials. The orientation of both the matrix and CNWs phases is monitored during stretching, both in wet and dry states. Little orientation of the CNWs is observed at low strains. Significant orientation of the CNWs occurs at high strain, for samples deformed both in the wet and dry states. The most significant orientation is observed for cellulose molecular chains present in the matrix phase. It is thought that this component of the orientation contributes significantly to the mechanical properties of the nanocomposites. The use of these approaches opens up opportunities to use wet processing to induce orientation of cellulose nanofibers, and to monitor the development of mechanical properties using Raman spectroscopy in a wet environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sakurada I, Nukushina Y, Ito T (1962) J Polym Sci 57:651

    Article  CAS  Google Scholar 

  2. Sturcova A, Davies GR, Eichhorn SJ (2005) Biomacromolecules 6:1055

    Article  CAS  Google Scholar 

  3. Iwamoto S, Kai WH, Isogai A, Iwata T (2009) Biomacromolecules 10:2571

    Article  CAS  Google Scholar 

  4. Saito T, Kuramae R, Wohlert J, Berglund LA, Isogai A (2013) Biomacromolecules 14:248

    Article  CAS  Google Scholar 

  5. Davies GC, Bruce DM (1998) Text Res J 68:623

    Article  CAS  Google Scholar 

  6. Hughes M (2012) J Mater Sci 47:599. doi:10.1007/s10853-011-6025-3

    Article  CAS  Google Scholar 

  7. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) J Mater Sci 45:1. doi:10.1007/s10853-009-3874-0

    Article  CAS  Google Scholar 

  8. Habibi Y, Lucia LA, Rojas OJ (2010) Chem Rev 110:3479

    Article  CAS  Google Scholar 

  9. Siro I, Plackett D (2010) Cellulose 17:459

    Article  CAS  Google Scholar 

  10. Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry: general principles and analytical methods, vol 1. Wiley, Weinheim

    Book  Google Scholar 

  11. Glasser WG, Atalla RH, Blackwell J, Brown RM, Burchard W, French AD, Klemm DO, Nishiyama Y (2012) Cellulose 19:589

    Article  CAS  Google Scholar 

  12. Nissan AH (1976) Macromolecules 9:840

    Article  CAS  Google Scholar 

  13. Xie YJ, Hill CAS, Jalaludin Z, Sun DY (2011) Cellulose 18:517

    Article  CAS  Google Scholar 

  14. Holland C, Vollrath F, Ryan AJ, Mykhaylyk OO (2012) Adv Mater 24:105

    Article  CAS  Google Scholar 

  15. Osorio-Madrao A, Eder M, Rueggeberg M, Pandey JK, Harrington MJ, Nishiyama Y, Putaux JL, Rochas C, Burgert I (2012) Biomacromolecules 13:850

    Article  Google Scholar 

  16. Urena-Benavides EE, Brown PJ, Kitchens CL (2010) Langmuir 26:14263

    Article  CAS  Google Scholar 

  17. Iwamoto S, Isogai A, Iwata T (2011) Biomacromolecules 12:831

    Article  CAS  Google Scholar 

  18. Sehaqui H, Mushi NE, Morimune S, Salajkova M, Nishino T, Berglund LA (2012) ACS Appl Mater Interfaces 4:1043

    Article  CAS  Google Scholar 

  19. Rusli R, Shanmuganathan K, Rowan SJ, Weder C, Eichhorn SJ (2010) Biomacromolecules 11:762

    Article  CAS  Google Scholar 

  20. Pullawan T, Wilkinson AN, Eichhorn SJ (2012) Biomacromolecules 13:2528

    Article  CAS  Google Scholar 

  21. Gindl W, Martinschitz KJ, Boesecke P, Keckes J (2006) Biomacromolecules 7(11):3146

    Article  CAS  Google Scholar 

  22. Kvien I, Oksman K (2007) Appl Phys A Mater Sci Process 87:641

    Article  CAS  Google Scholar 

  23. Nishino T, Matsuda I, Hirao K (2004) Macromolecules 37:7683

    Article  CAS  Google Scholar 

  24. Huber T, Mussig J, Curnow O, Pang SS, Bickerton S, Staiger MP (2012) J Mater Sci 47:1171. doi:10.1007/s10853-011-5774-3

    Article  CAS  Google Scholar 

  25. Pullawan T, Wilkinson AN, Eichhorn SJ (2010) Compos Sci Technol 70:2325

    Article  CAS  Google Scholar 

  26. Young RJ, Eichhorn SJ (2007) Polymer 48:2

    Article  CAS  Google Scholar 

  27. Peetla P, Schenzel KC, Diepenbrock W (2006) Appl Spectroscopy 60:682

    Article  CAS  Google Scholar 

  28. Gierlinger N, Schwanninger M, Reinecke A, Burgert I (2006) Biomacromolecules 7:2077

    Article  CAS  Google Scholar 

  29. Hamad WY, Eichhorn S (1997) ASME J Eng Mater Technol 119:309

    Article  CAS  Google Scholar 

  30. Eichhorn SJ, Hughes M, Snell R, Mott L (2000) J Mater Sci Lett 19:721

    Article  CAS  Google Scholar 

  31. Eichhorn SJ, Young RJ (2001) Cellulose 8:197

    Article  CAS  Google Scholar 

  32. Rusli R, Eichhorn SJ (2008) Appl Phys Lett 93:033111

    Article  Google Scholar 

  33. Tanpichai S, Quero F, Nogi M, Yano H, Young RJ, Lindstrom T, Sampson WW, Eichhorn SJ (2012) Biomacromolecules 13:1340

    Article  CAS  Google Scholar 

  34. Bulota M, Tanpichai S, Hughes M, Eichhorn SJ (2012) ACS Appl Mater Interfaces 4:331

    Article  CAS  Google Scholar 

  35. Rusli R, Eichhorn SJ (2011) Nanotechnology 22:325706

    Article  Google Scholar 

  36. Rusli R, Shanmuganathan K, Rowan SJ, Weder C, Eichhorn SJ (2011) Biomacromolecules 12:1363

    Article  CAS  Google Scholar 

  37. Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) Biomacromolecules 9:57

    Article  CAS  Google Scholar 

  38. Marquardt DW (1963) J Soc Ind Appl Math 11:431

    Article  Google Scholar 

  39. Capadona JR, Shanmuganathan K, Tyler DJ, Rowan SJ, Weder C (2008) Science 319:1370

    Article  CAS  Google Scholar 

  40. Ouali N, Cavaille JY, Perez J (1991) Plas Rubber Compos Process Appl 16:55

    CAS  Google Scholar 

  41. Wiley JH, Atalla RH (1987) Carbohydr Res 160:113

    Article  CAS  Google Scholar 

  42. Atalla RH, Nagel SC (1974) Science 185(4150):522

    Article  CAS  Google Scholar 

  43. Tanpichai S, Sampson WW, Eichhorn SJ (2012) Compos A Appl Sci Manuf 43:1145

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Royal Thai Government for a Ph.D scholarship for T.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Eichhorn.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1704 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pullawan, T., Wilkinson, A.N. & Eichhorn, S.J. Orientation and deformation of wet-stretched all-cellulose nanocomposites. J Mater Sci 48, 7847–7855 (2013). https://doi.org/10.1007/s10853-013-7404-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7404-8

Keywords

Navigation