Skip to main content
Log in

Defects in natural fibres: their origin, characteristics and implications for natural fibre-reinforced composites

  • Anniversary Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This article reviews defects in natural fibres and how, ultimately, they affect the properties of composite materials reinforced with such fibres. Under ideal circumstances, certain natural fibre like flax and hemp can display excellent tensile mechanical properties. However, the potential of the fibre is generally not realised in natural fibre-reinforced composites. Partly, this poor performance can be explained by the presence of defects in the fibres known variously as dislocations, kinks or microcompressions. After briefly considering the chemistry and structure of plant fibres, the properties of selected natural fibres are reviewed. The origin of defects and the impact that processing has on their presence is then considered. The effect that defects have on the mechanical properties of bast fibre and their susceptibility to chemical degradation is also reviewed. Finally, the effect that dislocations have on the properties of composites reinforced with natural fibres is discussed and areas of potential further research needed are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bolton AJ (1994) Mater Technol 9(1/2):12

    Google Scholar 

  2. Bolton AJ (1995) Outlook Agric 24(2):85

    Google Scholar 

  3. Joshi SV, Drzal LT, Mohanty AK, Arora S (2004) Composites Part A 35(3):371

    Article  Google Scholar 

  4. Dissanayke NPJ, Summerscales J, Grove SM, Singh MM (2009) J Biobased Mater Bioenergy 3:245

    Article  Google Scholar 

  5. Dissanayke NPJ, Summerscales J, Grove SM, Singh MM (2009) J Nat Fiber 6:331

    Article  Google Scholar 

  6. Summerscales J, Dissanayake NPJ, Virk AS, Hall W (2010) Composites Part A 41:1329

    Article  Google Scholar 

  7. Fowler PA, Hughes JM, Elias RM (2006) J Sci Food Agric 86(12):1781

    Article  CAS  Google Scholar 

  8. Hill CAS, Hughes M (2010) J Biobased Mater Bioenergy 4(2):148

    Article  CAS  Google Scholar 

  9. Summerscales J, Dissanayake NPJ, Virk AS, Hall W (2010) Composites Part A 41:1336

    Article  Google Scholar 

  10. Eichhorn SJ, Baillie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufresne A, Entwistle M, Herrera-Franco PJ, Escamilla GC, Groom L, Hughes M, Hill C, Rials TG, Wild PM (2001) J Mater Sci 36:2107. doi:10.1023/A:1017512029696

    Article  CAS  Google Scholar 

  11. Matthews FL, Rawlings RD (1994) Composite materials: engineering and science. Chapman and Hall, London

    Google Scholar 

  12. Sèbe G, Cetin NS, Hill CAS, Hughes M (2000) Appl Compos Mater 7:341

    Article  Google Scholar 

  13. George J, Sreekala MS, Thomas S (2001) Polym Eng Sci 41(9):1471

    Article  CAS  Google Scholar 

  14. Li X, Tabil LG, Panigrahi S (2007) J Polym Environ 15(1):25

    Article  Google Scholar 

  15. Xie YJ, Hill CAS, Xiao ZF, Militz H, Mai C (2010) Composites Part A 41(7):806

    Article  Google Scholar 

  16. Müssig J, Slootmaker T (2010) In: Müssig J (ed) The industrial application of natural fibers. Wiley, Chichester

    Chapter  Google Scholar 

  17. Morvan C, Andème-Onzighi C, Girault R, Himmelsbach DS, Driouich A, Akin DE (2003) Plant Physiol Biochem 41:935

    Article  CAS  Google Scholar 

  18. Weindling L (1947) Long vegetable fibres: manila, sisal, jute, flax and related fibers of commerce. Columbia University Press, New York

    Google Scholar 

  19. Dinwoodie JM (2000) Timber: its nature and behaviour, 2nd edn. E & FN Spon, New York

    Book  Google Scholar 

  20. Focher B (1992) In: Sharma HSS, Van Sumere CF (eds) The biology and processing of flax. M Publications, Belfast

    Google Scholar 

  21. Fengel D, Wegener G (1984) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin

    Google Scholar 

  22. Sakurada I, Nukushina Y, Taisuke I (1962) J Polym Sci 57:651

    Article  CAS  Google Scholar 

  23. Bledzki AK, Reihmane S, Gassan J (1996) J App Polym Sci 59:1329

    Article  CAS  Google Scholar 

  24. Gassan J, Bledzki AK (1996) In: Proceeding of the 54th annual technical conference, Society of Plastics Engineers, p 2553

  25. Robson D, Hague J, Newman G, Jeronomidis G, Ansell MP (1993) Survey of natural materials for use in structural composites as reinforcement and matrices. The BioComposites Centre, University of Wales, Bangor

    Google Scholar 

  26. Booker RE, Sell J (1998) Holz Roh Werkst 56:1

    Article  Google Scholar 

  27. Booker RE (1995) In: Donaldson LA, Singh AP, Butterfield BG, Whitehouse J (eds) Recent advances in wood anatomy. NZ Forest Research Institute Ltd., Rotorua

    Google Scholar 

  28. Thygesen LG, Eder M, Burgert I (2007) J Mater Sci 42(2):558. doi:10.1007/s10853-006-1113-5

    Article  CAS  Google Scholar 

  29. Preston RD (1974) The physical biology of plant cell walls. Chapman and Hall, London

    Google Scholar 

  30. Page DH, El-Hosseiny F, Winkler K, Lancaster APS (1977) Tappi 60(4):114

    Google Scholar 

  31. Mark RE (1967) Cell wall mechanics of tracheids. Yale University Press, New Haven

    Google Scholar 

  32. Kellog RM, Wangaard FF (1969) Wood Fiber Sci 1(3):180

    Google Scholar 

  33. Wilfong JG (1966) For Prod J 16(1):55

    CAS  Google Scholar 

  34. Thygesen A, Daniel G, Lilholt H, Thomsen AB (2008) J Nat Fiber 2(4):19

    Article  Google Scholar 

  35. Ivens J, Bos H, Verpoest I (1997) In: Renewable bioproducts: industrial outlets and research for the 21st century, EC-symposium at the International Agricultural Center (IAC), Wageningen, 24–25 June 1997

  36. Brown WJ (1947) Fabric reinforced plastics. Cleaver-Hume Press Ltd., London

    Google Scholar 

  37. Bos HL, Van den Oever MJA, Peters OCJJ (1997) In: Proceedings of the 4th international conference on deformation and fracture of composites, Manchester, March 1997

  38. McMullen P (1984) Composites 15(3):222

    Article  CAS  Google Scholar 

  39. Davies GC, Bruce DM (1998) Text Res J 68(9):623

    Article  CAS  Google Scholar 

  40. Snell R, Hague J, Groom L (1997) In: Proceedings of the 4th international conference on woodfiber–plastic composites, Forest Products Society, Madison, 12–14 May 1997

  41. Romhány G, Karger-Kocsis J, Czigány T (2003) J Appl Polym Sci 90:3638

    Article  Google Scholar 

  42. Duval A, Bourmaud A, Augier L, Baley C (2011) Mater Lett 65:797

    Article  CAS  Google Scholar 

  43. Page DH, Seth RS (1980) Tappi 63(10):99

    Google Scholar 

  44. Mott L, Shaler SM, Groom LH (1996) Wood Fiber Sci 28(4):429

    CAS  Google Scholar 

  45. Baley C (2002) Composites Part A 33(7):939

    Article  Google Scholar 

  46. Nyholm K, Ander P, Bardage S, Daniel G (2001) Nordic Pulp Paper Res 16(4):376

    Article  CAS  Google Scholar 

  47. Dinwoodie JM (1968) J Inst Wood Sci 21:37

    Google Scholar 

  48. Thygesen LG (2005) Nordic Pulp Paper Res 20(1):64

    Article  CAS  Google Scholar 

  49. Thygesen L, Asgharipour M (2008) J Mater Sci 43(10):3670. doi:10.1007/s10853-008-2587-0

    Article  CAS  Google Scholar 

  50. Bos HL, Donald AM (1999) J Mater Sci 34:3029. doi:10.1023/A:1004650126890

    Article  CAS  Google Scholar 

  51. Baley C (2004) J Mater Sci 39:331. doi:10.1023/B:JMSC.0000007768.63055.ae

    Article  CAS  Google Scholar 

  52. DeTeresa SJ, Allen SR, Farris RJ, Porter RS (1984) J Mater Sci 19:57. doi:10.1007/BF02403111

    Article  CAS  Google Scholar 

  53. DeTeresa SJ, Porter RS, Farris RJ (1988) J Mater Sci 23:1886. doi:10.1007/BF01115735

    Article  CAS  Google Scholar 

  54. Bos HL, Van den Oever MJA, Peters OCJJ (2002) J Mater Sci 37:1683. doi:10.1023/A:1014925621252

    Article  CAS  Google Scholar 

  55. Mathur A, Netravali AN (1996) J Mater Sci 31:1265. doi:10.1007/BF00353106

    Article  CAS  Google Scholar 

  56. Hull D, Clyne TW (1996) An introduction to composite materials. Cambridge University Press, Cambridge

    Google Scholar 

  57. Argon AS (1972) Fracture of composites. Academic Press, New York

    Google Scholar 

  58. Aslan M, Mehmood S, Madsen B, Goutianos S (2010) In: Proceedings of 14th European conference on composite materials, Budapest, 7–10 June 2010

  59. Dinwoodie JM (1978) Wood Sci Technol 12:271

    Article  Google Scholar 

  60. Page DH, El-Hosseiny F, Winkler K (1971) Nature 229:252

    Article  CAS  Google Scholar 

  61. Kim CY, Page DH, El-Hosseiny F, Lancaster APS (1975) J Appl Polym Sci 19:1549

    Article  CAS  Google Scholar 

  62. Page DH, El-Hosseiny F (1976) Sven Papp 14:471

    Google Scholar 

  63. Andersons J, Poriķe E, Spārniņš E (2009) Compos Sci Technol 69:2152

    Article  CAS  Google Scholar 

  64. Hornsby PR, Hinrichsen E, Tarverdi K (1997) J Mater Sci 32:443. doi:10.1023/A:1018521920738

    Article  CAS  Google Scholar 

  65. Nilsson T, Gustafsson PJ (2007) Composites Part A 38(7):1722

    Article  Google Scholar 

  66. Thygesen L (2008) J Mater Sci 43(4):1311. doi:10.1007/s10853-007-2284-4

    Article  CAS  Google Scholar 

  67. Keith CT, Cote WA (1968) For Prod J 15(3):67

    Google Scholar 

  68. Martin DC, Thomas EL (1991) J Mater Sci 26:5171. doi:10.1007/BF01143210

    Article  CAS  Google Scholar 

  69. Mühlethaler K (1965) In: Cote WA (ed) Cellular ultrastructure of woody plants. Syracuse University Press, Syracuse, NY

    Google Scholar 

  70. Dai D, Fan M (2011) Vib Spectrosc 55:300

    Article  CAS  Google Scholar 

  71. Hänninen T, Michud A, Hughes M (2011) Accepted for publication in Plast Rubber Compos

  72. da Silva Perez D, van Heiningen ARP (2002) Seventh European workshop on lignocellulosics and pulp, Turku, p 393

  73. Grubb DT, Li Z-F (1994) J Mater Sci 29:203. doi:10.1007/BF00356594

    Article  CAS  Google Scholar 

  74. Gonzalez-Chi PI, Flores-Johnson EA, Carrillo-Baeza JG, Young RJ (2010) Polym Compos 31(10):1817

    Article  CAS  Google Scholar 

  75. Eichhorn SJ, Hughes M, Snell R, Mott L (2000) J Mater Sci Lett 19(8):721

    Article  CAS  Google Scholar 

  76. Hughes M, Hill CAS, Sèbe G, Hague J, Spear M, Mott L (2000) Compos Interface 7(1):13

    Article  CAS  Google Scholar 

  77. Hughes M, Carpenter J, Hill C (2007) J Mater Sci 42(7):2499. doi:10.1007/s10853-006-1027-2

    Article  CAS  Google Scholar 

  78. Charlet K, Jernot J-P, Gomina M, Bizet L, Bréard J (2010) J Compos Mater 44(24):2887

    Article  CAS  Google Scholar 

  79. Hughes M, Hill CAS, Hague JRB (2002) J Mater Sci 37:4669. doi:10.1023/A:1020621020862

    Article  CAS  Google Scholar 

  80. Hughes M, Mott L, Hague J, Hill CAS (1999) In: Proceedings of the 5th international conference on woodfiber–plastic composites, Madison, May 1999

  81. Liu Q, Hughes M (2008) Composites Part A 29(10):1644

    Article  Google Scholar 

  82. Gordon JE, Jeronimidis G (1974) Nature 252:116

    Article  CAS  Google Scholar 

  83. Gordon JE, Jeronomidis GJ (1980) Philos T Roy Soc A 294:545

    Article  CAS  Google Scholar 

  84. Aero Research Limited (1945) Aero Research Technical Notes

  85. Bishopp JA (1997) Int J Adhes Adhes 17:287

    Article  Google Scholar 

  86. Stuart T, Liu Q, Hughes M, McCall RD, Sharma S, Norton A (2006) Composites Part A 37(3):393

    Article  Google Scholar 

  87. Kessler RW, Kohler R (1996) ChemTech 26:34

    Google Scholar 

  88. Thygesen LG (2011) J Mater Sci 46:2135. doi:10.1007/s10853-010-5049-4

    Article  CAS  Google Scholar 

  89. Charlet K, Jernot JP, Eve S, Gomina M, Bréard J (2010) Carbohydr Polym 82:54

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Hughes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hughes, M. Defects in natural fibres: their origin, characteristics and implications for natural fibre-reinforced composites. J Mater Sci 47, 599–609 (2012). https://doi.org/10.1007/s10853-011-6025-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6025-3

Keywords

Navigation