Skip to main content
Log in

About the structure of cellulose: debating the Lindman hypothesis

  • Review
  • Published:
Cellulose Aims and scope Submit manuscript

An Erratum to this article was published on 18 April 2012

Abstract

The hypothesis advanced in this issue of CELLULOSE [Springer] by Bjorn Lindman, which asserts that the solubility or insolubility characteristics of cellulose are significantly based upon amphiphilic and hydrophobic molecular interactions, is debated by cellulose scientists with a wide range of experiences representing a variety of scientific disciplines. The hypothesis is based on the consideration of some fundamental polymer physicochemical principles and some widely recognized inconsistencies in behavior. The assertion that little-recognized (or under-estimated) hydrophobic interactions have been the reason for a tardy development of cellulose solvents provides the platform for a debate in the hope that new scientific endeavors are stimulated on this important topic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Atalla RH (1983) The structure of cellulose: recent developments. In: Soltes EJ (ed) Wood and agricultural residues. Academic Press New York, London, p 59

    Google Scholar 

  • Bergenstråhle M, Wohlert J, Himmel ME, Brady JW (2010) Simulation studies of the insolubility of cellulose. Carbohydr Res 345:2060–2066

    Article  Google Scholar 

  • Burchard W, Habermann N, Klüfers P, Seger B, Wilhelm U (1994) Cellulose in Schweizer’s reagent: a stable, polymeric complex with high chain stiffness. Angew Chem Int Educ 33:884

    Article  Google Scholar 

  • Cousins SK, Brown RM Jr (1995) Cellulose I microfibril assembly: computational molecular mechanics energy analysis favours bonding by van der Waals forces as the initial step in crystallization. Polymer 36:3885–3888

    Article  CAS  Google Scholar 

  • Cousins SK, Brown RM Jr (1997a) X-ray diffraction and ultrastructural analyses of dye-altered celluloses support van der Waals forces as the initial step in cellulose crystallization. Polymer 38:897–902

    Article  CAS  Google Scholar 

  • Cousins SK, Brown RM Jr (1997b) Photoisomerization of a dye-altered β-1, 4 glucan sheet induces the crystallization of a cellulose-composite. Polymer 38:903–912

    Article  CAS  Google Scholar 

  • Cui W, Wood PJ, Blackwell B, Nikiforuk J (2000) Physicochemical properties and structural characterization by two-dimensional NMR spectroscopy of wheat β-D-glucan in comparison with other cereal β-D-glucans. Carbohydr Polym 41:249

    Article  CAS  Google Scholar 

  • Esker A, Becker U, Jamin S, Beppu S, Renneckar S, Glasser WG (2004) Self-assembly behavior of some co- and hetero-polysaccharides related to hemicellulose. ACS Symp. Ser. No. 864, 198–219

  • Flory PJ (eds) (1953) Statistical thermodynamics of polymer solutions. In: Principles of polymer chemistry, Chapter 12. Cornell University, Ithaca and London, p 495

  • French AD, Miller DP, Aabloo A (1993) Miniature crystal models of cellulose polymorphs and other carbohydrates. Int J Biol Macromol 15:3036

    Article  Google Scholar 

  • French AD, Dowd MK, Cousins SK, Brown RM, Miller DP (1995) Molecular deformations and lattice energies of models of solid saccharides. ACS Symp Ser 618, 1337

    Google Scholar 

  • Fuchs R, Habermann N, Klüfers P (1993) Sandwichartige Mehrkernkomplexe aus deprotoniertem β-cyclodextrin und Kupfer II-Ionen. Angew Chem 105:895

    Article  CAS  Google Scholar 

  • Glasser WG (2008) Cellulose and associated heteropolysaccharides. In: Fraser-Reid B, Tatsuta K, Thiem J (eds) Glycoscience, Chapter 6.3. Springer-Verlag, Berlin Heidelberg, pp 1473–1512

  • Gradwell SE, Renneckar S, Esker AR, Heinze Th, Gatenholm P, Vaca-Garcia C, Glasser WG (2004) Surface modification of cellulose fibers: towards wood composites by biomimetics. CR Biol 327(9–10):945–953

    Article  CAS  Google Scholar 

  • Haigler C, Brown RM Jr, Benziman M (1980) Calcofluor White ST alters the in vivo assembly of cellulose microfibrils. Science 210:903–906

    Article  CAS  Google Scholar 

  • Haigler CH, White AR, Brown RM Jr, Cooper KM (1982) Alteration of in vivo cellulose ribbon assembly by carboxymethyl-cellulose and other cellulose derivatives. J Cell Biol 94:64–69

    Article  CAS  Google Scholar 

  • Kaya A, Drazenovich DA, Glasser W, Heinze T, Esker A (2009) Hydroxypropyl xylan self-assembly at air/water and water/cellulose interfaces. ACS Symp. Ser. #1019, 171–191

  • Kaya A, Du X, Liu Z, Wu JW, Morris JR, Glasser WG, Heinze T, Esker AR (2009b) Surface plasmon resonance studies of pullulan cinnamate adsorption onto cellulose. Biomacromolecules 10:2451–2459

    Article  CAS  Google Scholar 

  • Klüfers P, Mayer P, Schumacher JZ (1994) Linear coordination polymers of copper II and fourfold deprotonated sugar alcohols. Angw Chem Int Educ 33:1742

    Article  Google Scholar 

  • Koshijima T, Watanabe T (2003) Association between lignin and carbohydrates in wood and other plant tissues. Springer, New York, p 329

  • Le Moigne N, Bikard J, Navard P (2010) Contraction and rotation and contraction of native and regenerated cellulose fibres upon swelling and dissolution: the role of stress unbalance. Cellulose 17(3):507–519

    Article  CAS  Google Scholar 

  • Medonca S, Johnson GP, French AD, Laine RA (2002) Conformational analyses of native and permethylated disaccharides. J Phys Chem A 106:4115–4124

    Article  Google Scholar 

  • Medronho B, Ramano Q, Graca Miguel MA, Stigsson L, Lindman B (2012) Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophiobic interactions. Cellulose. doi:10.1007/s10570-011-9644-6

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  Google Scholar 

  • Nishiyama Y, Johnson GP, French AD (2012) Diffraction from nonperiodic models of cellulose crystals. Cellulose. doi:10.1007/s10570-012-9652-1

    Google Scholar 

  • Parthasarathi R, Bellesia G, Chundawat SPS, Dale BE, Langan P, Gnankaran S (2011) Insights into hydrogen bonding and stacking interactions in cellulose. J Phys Chem A 115:14191–14202

    Article  CAS  Google Scholar 

  • Pincu M, Cocinero EJ, Mayorkas N, Brauer B, Davis B, Gerber RB, Simons JP (2011) Isotopic hydration of cellobiose vibrational spectroscopy and DYNAMICAL simulations. J Phys Chem A 115:9498

    Article  CAS  Google Scholar 

  • Saalwächter K, Burchard W, Klüfers P, Mayer P, Klemm D, Dugarmaa S (2000) Cellulose in water containing metal complexes. Macromolecules 33:4094

    Article  Google Scholar 

  • Smith DC, Glasser WG, Glasser HR, Ward TC (1988) Simulation of reactions with lignin by computer (SIMREL) VII. About the gel structure of lignin. Cellul Chem Technol 22:171–190

    CAS  Google Scholar 

  • Sponsler OL (1931) Orientation of cellulose space lattice in the cell wall, additional X-ray data from Valonia cell-wall. Protoplasma 12:241–255

    Article  Google Scholar 

  • Tanford C (1973) The hydrophobic effect. Wiley, New York

    Google Scholar 

  • Warwicker JO, Wright AC (1967) Function of sheets of cellulose in swelling reactions on cellulose. J Appl Polym Sci 11:659–671

    Article  CAS  Google Scholar 

  • Westbye P, Koehnke T, Glasser W, Gatenholm P (2007) The influence of lignin on the self-assembly behaviour of xylan rich fractions from birch (Betula pendula). Cellulose 14(6):603–613

    Article  CAS  Google Scholar 

  • Wood P, Fulcher RG, Stones BA (1983) Studies on the specific interaction of cereal cell wall components with congo red and calcofluor specific detection and histochemistry of (1–3),(q-4). β-D-glucan. J Cereal Sci 1:95

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang G. Glasser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glasser, W.G., Atalla, R.H., Blackwell, J. et al. About the structure of cellulose: debating the Lindman hypothesis. Cellulose 19, 589–598 (2012). https://doi.org/10.1007/s10570-012-9691-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9691-7

Keywords

Navigation