Skip to main content
Log in

The significance of grain boundary sliding in the superplastic Zn–22 % Al alloy processed by ECAP

  • Nanostructured Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A Zn–22 % Al eutectoid alloy was processed by equal-channel angular pressing (ECAP) to reduce the grain size to ~0.8 μm. Tensile testing at 473 K showed superplastic characteristics with a maximum elongation of ~2230 % at a strain rate of 1.0 × 10−2 s−1. The significance of grain boundary sliding (GBS) was evaluated by measuring sliding offsets at adjacent grains from the displacements of surface marker lines in samples pulled to elongations of 30 % at a series of different strain rates. The highest sliding contribution was recorded under testing conditions corresponding to the maximum superplastic ductility. There were relatively large offsets at the Zn–Zn and Zn–Al interfaces, but smaller offsets at the Al–Al interfaces. Analysis shows the results are affected by the presence of agglomerates of similar grains which are present after ECAP processing and specifically by the increased fraction of Al–Al boundaries. The experimental results are in excellent agreement with the predictions of a deformation mechanism map depicting the flow behavior in the Zn–22 % Al alloy, and the results confirm the importance of GBS as the dominant mechanism of flow in superplasticity after processing by ECAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Langdon TG (1982) Metall Trans 13A:689

    Google Scholar 

  2. Valiev RZ, Krasilnikov NA, Tsenev NK (1991) Mater Sci Eng A137:35

    CAS  Google Scholar 

  3. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103

    Article  CAS  Google Scholar 

  4. Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881

    Article  CAS  Google Scholar 

  5. Zhilyaev AP, Langdon TG (2008) Prog Mater Sci 53:893

    Article  CAS  Google Scholar 

  6. Kawasaki M, Langdon TG (2007) J Mater Sci 42:1782. doi:10.1007/s10853-006-0954-2

    Article  CAS  Google Scholar 

  7. Langdon TG (1994) Acta Metall Mater 42:2437

    Article  CAS  Google Scholar 

  8. Valiev RZ, Salimonenko DA, Tsenev NK, Berbon PB, Langdon TG (1997) Scripta Mater 37:1945

    Article  CAS  Google Scholar 

  9. Langdon TG (1994) Mater Sci Eng A174:225

    CAS  Google Scholar 

  10. Vastava RB, Langdon TG (1979) Acta Metall 27:251

    Article  CAS  Google Scholar 

  11. Novikov II, Portnoy VK, Terentieva TE (1977) Acta Metall 25:1139

    Article  CAS  Google Scholar 

  12. Shariat P, Vastava RB, Langdon TG (1982) Acta Metall 30:285

    Article  CAS  Google Scholar 

  13. Lin ZR, Chokshi AH, Langdon TG (1998) J Mater Sci 23:2712. doi:10.1007/BF00547441

    Article  Google Scholar 

  14. Islamgaliev RK, Yunusova NF, Valiev RZ, Tsenev NK, Perevezentsev VN, Langdon TG (2003) Scripta Mater 49:467

    Article  CAS  Google Scholar 

  15. Kumar P, Xu C, Langdon TG (2005) Mater Sci Eng A410–411:447

    Google Scholar 

  16. Kawasaki M, Langdon TG (2008) Mater Trans 49:84

    Article  CAS  Google Scholar 

  17. Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG (1996) Scripta Mater 35:143

    Article  CAS  Google Scholar 

  18. Furukawa M, Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Mater Sci Eng A257:328

    CAS  Google Scholar 

  19. Kumar P, Xu C, Langdon TG (2006) Mater Sci Eng A429:324

    CAS  Google Scholar 

  20. Bell RL, Langdon TG (1967) J Mater Sci 2:313. doi:10.1007/BF00572414

    Article  CAS  Google Scholar 

  21. Langdon TG (1972) Metall Trans 3:797

    Article  CAS  Google Scholar 

  22. Bell RL, Graeme-Barber C, Langdon TG (1967) Trans AIME 239:1821

    CAS  Google Scholar 

  23. Langdon TG (2006) J Mater Sci 41:597. doi:10.1007/s10853-006-6476-0

    Article  CAS  Google Scholar 

  24. Ishikawa H, Mohamed FA, Langdon TG (1975) Phil Mag 32:1269

    Article  CAS  Google Scholar 

  25. Langdon TG (2009) J Mater Sci 44:5998. doi:10.1007/s10853-009-3780-5

    Article  CAS  Google Scholar 

  26. Mohamed FA, Langdon TG (1981) Acta Metall 29:911

    Article  CAS  Google Scholar 

  27. Mohamed FA, Langdon TG (1976) Scripta Metall 10:759

    Article  CAS  Google Scholar 

  28. Mohamed FA, Shei SA, Langdon TG (1975) Acta Metall 23:1443

    Article  CAS  Google Scholar 

  29. Langdon TG, Mohamed FA (1977) Scripta Metall 11:575

    Article  CAS  Google Scholar 

  30. Thompson AW (1972) Metallography 5:366

    Article  Google Scholar 

  31. Kawasaki M, Sklenička V, Langdon TG (2010) J Mater Sci 45:271. doi:10.1007/s10853-009-3975-9

    Article  CAS  Google Scholar 

  32. Kawasaki M, Balasubramanian N, Langdon TG (2011) Mater Sci Eng A528:6624

    Google Scholar 

  33. Ishikawa H, Bhat DG, Mohamed FA, Langdon TG (1977) Metall Trans 8A:523

    CAS  Google Scholar 

  34. Ahmed MMI, Mohamed FA, Langdon TG (1979) J Mater Sci 14:2913. doi:10.1007/BF00611474

    Article  CAS  Google Scholar 

  35. Duong K, Mohamed FA (1998) Acta Mater 46:4571

    Article  Google Scholar 

  36. Langdon TG (1981) J Mater Sci 16:2613. doi:10.1007/BF01113604

    Article  CAS  Google Scholar 

  37. Duong K, Mohamed FA (2001) Metall Mater Trans 32A:103

    Article  CAS  Google Scholar 

  38. Kawasaki M, Langdon TG (2009) Mater Sci Eng A503:48

    CAS  Google Scholar 

  39. Málek P (1999) Mater Sci Eng A268:132

    Google Scholar 

  40. Terhune SD, Swisher DL, Oh-ishi K, Horita Z, Langdon TG, McNelley TR (2002) Metall Mater Trans A 33A:2173

    Article  CAS  Google Scholar 

  41. Kawasaki M, Horita Z, Langdon TG (2009) Mater Sci Eng A524:143

    CAS  Google Scholar 

  42. Xu C, Horita Z, Langdon TG ((2011) Mater Sci Eng A528:6059

    Google Scholar 

  43. Lee S, Berbon PB, Furukawa M, Horita Z, Nemoto M, Tsenev NK, Valiev RZ, Langdon TG (1999) Mater Sci Eng A272:63

    CAS  Google Scholar 

  44. Xu C, Dixon W, Furukawa M, Horita Z, Langdon TG (2003) Mater Lett 57:3588

    Article  CAS  Google Scholar 

  45. Xu C, Furukawa M, Horita Z, Langdon TG (2005) Acta Mater 53:749

    Article  CAS  Google Scholar 

  46. Furukawa M, Ma Y, Horita Z, Nemoto M, Valiev RZ, Langdon TG (1998) Mater Sci Eng A241:122

    CAS  Google Scholar 

  47. Furukawa M, Horita Z, Nemoto M, Valiev RZ, Langdon TG (1996) J Mater Res 11:2128

    Article  CAS  Google Scholar 

  48. Kawasaki M, Ahn B, Langdon TG (2010) Acta Mater 58:919

    Article  CAS  Google Scholar 

  49. Davies PW, Stevens RN, Wilshire B (1965) Nature 206:924

    Article  Google Scholar 

  50. Rachinger WA (1952) J Inst Metals 81:33

    CAS  Google Scholar 

  51. Langdon TG, Bell RL (1968) Trans AIME 242:2479

    Google Scholar 

  52. Ishida Y, Mullendore AW, Grant NJ (1965) Trans AIME 233:204

    Google Scholar 

  53. Bell RL, Graeme-Barber C (1970) J Mater Sci 5:933. doi:10.1007/BF00558172

    Article  CAS  Google Scholar 

  54. Ashby MF (1972) Acta Metall 20:887

    Article  CAS  Google Scholar 

  55. Langdon TG, Mohamed FA (1978) J Mater Sci 13:1282. doi:10.1007/BF00544735

    Article  CAS  Google Scholar 

  56. Mohamed FA, Langdon TG (1974) Metall Trans 5:2339

    Article  CAS  Google Scholar 

  57. Langdon TG, Mohamed FA (1978) Mater Sci Eng 32:103

    Article  Google Scholar 

  58. Kawasaki M, Lee S, Langdon TG (2009) Scripta Mater 61:963

    Article  CAS  Google Scholar 

  59. Kawasaki M, Langdon TG (2010) Mater Sci Forum 638–642:1965

    Article  Google Scholar 

  60. Kawasaki M, Langdon TG (2011) Mater Sci Eng A528:6140

    Google Scholar 

  61. Kawasaki M, Mendes AA, Sordi VL, Ferrante M, Langdon TG (2011) J Mater Sci 46:155. doi:10.1007/s10853-010-4889-2

    Article  CAS  Google Scholar 

  62. Kawasaki M, Langdon TG (2012) J Mater Sci 47:7726. doi:10.1007/s10853-012-6507-y

    Article  CAS  Google Scholar 

  63. Mohamed FA, Langdon TG (1975) Acta Metall 23:117

    Article  CAS  Google Scholar 

  64. Nabarro FRN (1948) Report of a conference on strength of solids. Physical Society, London, p 75

    Google Scholar 

  65. Herring C (1950) J Appl Phys 21:437

    Article  Google Scholar 

  66. Coble RL (1963) J Appl Phys 34:1679

    Article  Google Scholar 

  67. Bird JE, Mukherjee AK, Dorn JE (1969) In: Brandon DG, Rosen A (eds) Quantitative relation between properties and microstructure. Israel Universities Press, Jerusalem, p 255

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation of the United States under Grant No. DMR-1160966 and in part by the European Research Council under ERC Grant Agreement No. 267464-SPDMETALS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megumi Kawasaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawasaki, M., Langdon, T.G. The significance of grain boundary sliding in the superplastic Zn–22 % Al alloy processed by ECAP. J Mater Sci 48, 4730–4741 (2013). https://doi.org/10.1007/s10853-012-7104-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-7104-9

Keywords

Navigation