Skip to main content
Log in

An investigation of microstructure and grain-boundary evolution during ECA pressing of pure aluminum

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

High-purity aluminum (99.99 pct) was processed by equal-channel angular pressing (ECAP) at room temperature through a die with a 90 deg angle between the die channels. Samples were examined by transmission electron microscopy (TEM) and orientation imaging microscopy (OIM) methods after one, four, and 12 passes through the die. Repetitively pressed samples were rotated by 90 deg in the same sense between successive pressing operations (route BC). After one pressing, TEM showed a subgrain structure which was elongated in the shearing direction. Corresponding OIM data illustrated an inhomogeneous microstructure in which bandlike features were also aligned with the shearing direction. The lattice orientation varied from location to location in the material. The boundary disorientation distribution determined from the OIM data exhibited a peak at 2 to 5 deg, in agreement with a predominance of subgrains in the microstructure. After four pressings, the microstructure data obtained by TEM and OIM were mutually consistent. The disorientation data revealed a decrease in the population of 2 to 5 deg boundaries accompanied by an overall upward shift in the distribution. Two orientations were generally apparent in the texture, although specific orientations varied with location. Often, a 〈111〉 orientation tended to align with the shear direction. Following 12 ECA passes, the grain size was reduced further to about 1.0 µm. The populations of high-angle boundaries (≥15 deg) increased in the disorientation distribution. A texture characteristic of shear deformation of fcc metals became apparent, although the orientations and particular components varied with location. Microstructural refinement during severe straining includes the development of large fractions of high-angle boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.Z. Valiev, R.R. Mulyukov, V.V. Ovchinnikov, and V.A. Shabashov: Scripta Metall. Mater., 1991, vol. 25, pp. 2717–22.

    Article  CAS  Google Scholar 

  2. N.A. Akhmadeev, V.I. Kopylov, R.R. Mulyukov, and R.Z. Valiev: Izv. Akad. Nauk SSSR Met., 1992, vol. 5, pp. 91–101.

    Google Scholar 

  3. J. Wang, Z. Horita, M. Furukawa, M. Nemoto, N.K. Tsenev, R.Z. Valiev, Y. Ma, and T.G. Langdon: J. Mater. Res., 1993, vol. 8, pp. 2810–18.

    CAS  Google Scholar 

  4. T.G. Langdon, M. Furukawa, M. Nemoto, and Z. Horita: JOM, 2000, vol. 52 (4), pp. 30–33.

    CAS  Google Scholar 

  5. R.Z. Valiev, O.A. Kaibyshev, R.I. Kuznetsov, R.S. Musalimov, and N.K. Tsenev: Dokl. Akad. Nauk SSSR 1988, vol. 301, pp. 864–66.

    CAS  Google Scholar 

  6. O.A. Kaibyshev, R. Kaibyshev, and G. Salishchev: Mater. Sci. Forum, 1993, vols. 113–115, pp. 423–28.

    Article  Google Scholar 

  7. G.A. Salishchev, R.M. Imayev, V.M. Imayev, and N.K. Gabdullin: Mater. Sci. Forum, 1993, vols. 113–115, pp. 613–18.

    Google Scholar 

  8. R.Z. Valiev, N.A. Krasilnikov, and N.K. Tsenev: Mater. Sci. Eng., 1991, vol. A137, pp. 35–40.

    CAS  Google Scholar 

  9. C.C. Koch and Y.S. Cho: Nanostruct. Mater., 1992, vol. 1, pp. 207–12.

    Article  CAS  Google Scholar 

  10. D.A. Rigney: Ann. Rev. Mater. Sci., 1988, vol. 18, pp. 141–63.

    Article  CAS  Google Scholar 

  11. J. Wang, Z. Horita, M. Furukawa, M. Nemoto, R.Z. Valiev, and T.G. Langdon: Mater. Sci. Eng., 1996, vol. A216, pp. 41–46.

    CAS  Google Scholar 

  12. M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, and T.G. Langdon: Acta Mater., 1996 vol. 44, pp. 4619–29.

    Article  CAS  Google Scholar 

  13. Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon: Acta Mater., 1998, vol. 46, pp. 3317–31.

    Article  CAS  Google Scholar 

  14. Z. Horita, T. Fujinami, M. Nemoto, and T.G. Langdon: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 691–701.

    Article  CAS  Google Scholar 

  15. V.M. Segal: Mater. Sci. Eng., 1995, vol. A197, pp. 157–64.

    CAS  Google Scholar 

  16. Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon: Acta Matter., 1997, vol. 45, pp. 4733–41.

    Article  CAS  Google Scholar 

  17. A. Gholinia, P.B. Prangnell, and M.V. Markushev: Acta Mater., 2000, vol. 48, pp. 1115–30.

    Article  CAS  Google Scholar 

  18. M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon: Mater. Sci. Eng., 1998, vol. A257, pp. 328–32.

    CAS  Google Scholar 

  19. K. Oh-ishi, Z. Horita, M. Furukawa, M. Nemoto, and T.G. Langdon: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2011–13.

    Article  CAS  Google Scholar 

  20. S.D. Terhune, Z. Horita, M. Nemoto, Y. Li, T.G. Langdon, and T.R. McNelley: Proc. ReX’99, 4th Int. Conf. on Recrystallization and Related Phenomena, T. Sakai and H.G. Suzuki, eds., Japan Institute of Metals, Sendai, Japan, 1999, pp. 515–22.

    Google Scholar 

  21. S.C. Vogel: Los Alamos National Laboratory, Los Alamos, NM, private communication, 2002

  22. Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, and T.G. Langdon: Scripta Mater., 1996, vol. 35, pp. 143–46.

    Article  CAS  Google Scholar 

  23. J.R. Bowen, A. Gholinia, S.M. Roberts, and P.B. Prangnell: Mater. Sci. Eng., 2000, vol. A287, pp. 87–99.

    CAS  Google Scholar 

  24. H.S. Kim, M.H. Seo, and S.I. Hong: Mater Sci. Eng., 2000, vol. A291, pp. 86–90.

    CAS  Google Scholar 

  25. D. Yamaguchi, Z. Horita, M. Nemoto, and T.G. Langdon: Scripta Mater., 1999, vol. 41, pp. 791–96.

    Article  CAS  Google Scholar 

  26. V. Randle: Microtexture Determination and Its Applications, The Institute of Metals, London, 1992.

    Google Scholar 

  27. G.R. Canova, U.F. Kocks, and J.J. Jonas: Acta Metall., 1984, vol. 32, pp. 211–26.

    Article  CAS  Google Scholar 

  28. C.P. Chang, P.L. Sun, and P.W. Kao: Acta Mater., 2000, vol. 48, pp. 3377–85.

    Article  CAS  Google Scholar 

  29. J.Y. Chang, J.S. Yoon, and G.H. Kim: Scripta Mater., 2001, vol. 45, pp. 347–54.

    Article  CAS  Google Scholar 

  30. J.K. Mackenzie: Biometrika, 1958, vol. 45, pp. 229–40.

    Google Scholar 

  31. M.T. Pérez-Prado and T.R. McNelley: Scripta Mater., 1999, vol. 40, pp. 1401–06.

    Article  Google Scholar 

  32. Q. Liu: Ultramicroscopy, 1995, vol. 60, pp. 81–89.

    Article  CAS  Google Scholar 

  33. O.V. Mishin, V.Y. Gertsman, R.Z. Valliev, and G. Gottstein: Scripta Mater., 1996, vol. 35, pp. 873–78.

    Article  CAS  Google Scholar 

  34. S.R. Agnew, U.F. Kocks, K.T. Hartwig, and J.R. Weertman: in Modeling of Structure and Mechanics of Materials from Microscale to Product, J.V. Carstensen, T. Leffers, T. Lorentzen, O.B. Pedersen, B.F. Sørensen, and G. Winther, eds. Risø National Laboratory, Roskilde, Denmark, 1998, pp. 201–06.

    Google Scholar 

  35. D.P. Field and H. Weiland: in Electron Backscatter Diffraction in Materials Science, A.J. Schwartz, M. Kumar, and B.L. Adams, eds., Kluwer Academic Press, New York, NY, 2000, pp. 199–212.

    Google Scholar 

  36. O.V. Mishin, D. Juul Jensen, and N. Hansen: in Recrystallization—Fundamental Aspects and Relations to Deformation Microstructure, N. Hansen, X. Huang, D. Juul Jensen, E.M. Lauridsen, T. Leffers, W. Pantleon, T. Sabin, and J.A. Wert, eds., Risø National Laboratory, Roskilde, Denmark, 2000, pp. 445–48.

    Google Scholar 

  37. P.B. Prangnell, J.R. Bowen, A. Gholinia, and M.V. Markushev: Materials Research Society Symposium Proceedings, Materials Research Society, Pittsburgh, PA, 2000, vol. 601, pp. 323–34.

    Google Scholar 

  38. P.B. Prangnell, A. Gholinia, and M.V. Markushev: in Investigations and Applications of Severe Plastic Deformation, T.C. Lowe and R.Z. Valiev, eds., Kluwer Academic, Dordrecht, The Netherlands, 2000, pp. 65–71.

    Google Scholar 

  39. D.A. Hughes and N. Hansen: Acta Mater., 1997, vol. 45, pp. 3871–86.

    Article  CAS  Google Scholar 

  40. S. Komura, Z. Horita, M. Nemoto, and T.G. Langdon: J. Mater Res., 1999, vol. 14, pp. 4044–50.

    CAS  Google Scholar 

  41. K. Nakashima, Z. Horita, M. Nemoto, and T.G. Langdon: Acta Mater., 1998, vol. 46, pp. 1589–99.

    Article  CAS  Google Scholar 

  42. Y.T. Zhu and T.C. Lowe: Mater. Sci. Eng., 2000, vol. A291, pp. 46–53.

    CAS  Google Scholar 

  43. Z. Horita, M. Furukawa, M. Nemoto, A.J. Barnes, and T.G. Langdon: Acta Mater., 2000, vol. 48, pp. 3633–40.

    Article  CAS  Google Scholar 

  44. S. Komura, Z. Horita, M. Furukawa, M. Nemoto, and T.G. Langdon: Metall. Mater. Trans. A., 2001, vol. 32A, pp. 707–16.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terhune, S.D., Swisher, D.L., Oh-Ishi, K. et al. An investigation of microstructure and grain-boundary evolution during ECA pressing of pure aluminum. Metall Mater Trans A 33, 2173–2184 (2002). https://doi.org/10.1007/s11661-002-0049-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0049-x

Keywords

Navigation