Skip to main content
Log in

An investigation of grain boundary sliding in superplasticity at high elongations

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Experiments were performed on the superplastic Zn-22% Al eutectoid alloy to determine the contribution of grain boundary sliding at both low (35%) and high (∼235%) elongations. The tests were conducted at two different strain rates in the superplastic Region II, and the results show that, within the accuracy of the measurements, there is a large sliding contribution at both elongations. By taking detailed measurements of both the magnitude of the sliding offset and the type of interface, it is shown that the average offsets are generally a maximum at the Zn-Zn boundaries, there is less sliding at the Zn-Al interfaces, and the offsets are a minimum at the Al-Al boundaries. In addition, the distributions of the magnitudes of the sliding offsets are similar at both the low and high elongations. It is concluded that grain boundary sliding is an important deformation process in the superplastic Region II and that it remains important even when the elongation is very high. The nature of the results indicates also that experimental observations of the deformation behaviour in superplastic materials at low elongations (up to 50%) provide meaningful information on the behaviour at much higher (superplastic) elongations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Woodford, Trans. ASM 62 (1969) 291.

    Google Scholar 

  2. F. A. Nichols, Acta Metall. 28 (1980) 663.

    Google Scholar 

  3. A. H. Chokshi and T. G. Langdon, in “Superplasticity”, edited by B. Baudelet and M. Suéry (Centre National de la Recherche Scientifique, Paris, 1985) p. 2.1.

    Google Scholar 

  4. S. Hori, N. Furushiro and S. Kawaguchi, J. Jpn Inst. Light Metals 25 (1975) 361.

    Google Scholar 

  5. R. Z. Valiev, O. A. Kaibyshev, M. Kh. Rabinovich, Yu. P. Timoshenko and O. L. Chistova, Fiz. Metal. Metalloved. 51 (1981) 615.

    Google Scholar 

  6. K. Matsuki, H. Morita, M. Yamada and Y. Murakami, Metal Sci. 11 (1977) 156.

    Google Scholar 

  7. K. Matsuki, Y. Ueno and M. Yamada, J. Jpn Inst. Metals 38 (1974) 219.

    Google Scholar 

  8. K. Matsuki, N. Hariyama and M. Tokizawa, ibid. 45 (1981) 935.

    Google Scholar 

  9. S.-A. Shei and T. G. Langdon, J. Mater. Sci. 16 (1981) 2988.

    Google Scholar 

  10. V. K. Portnoy and V. A. Kozhanov, Fiz. Metal. Metalloved. 55 (1983) 592.

    Google Scholar 

  11. C. Puquan and Z. Min, in “Strength of Metals and Alloys (ICSMA7)”, Vol. 2, edited by H. J. McQueen, J.-P. Baïlon, J. I. Dickson, J. J. Jonas and M. G. Akben (Pergamon, Oxford, 1985) p. 817.

    Google Scholar 

  12. D. Lee, Acta Metall. 17 (1969) 1057.

    Google Scholar 

  13. R. Z. Valiev and O. A. Kaibyshev, Phys. Status Solidi (a) 44 (1977) 65.

    Google Scholar 

  14. D. J. Dingley, in “Scanning Electron Microscopy” (IIT Research Institute, Chicago, 1970) p. 331.

    Google Scholar 

  15. R. B. Vastava and T. G. Langdon, Acta Metall. 27 (1979) 251.

    Google Scholar 

  16. N. Furushiro and S. Hori, Scripta Metall. 13 (1979) 653.

    Google Scholar 

  17. O. A. Kaibyshev, R. Z. Valiev and V. V. Astanin, Phys. Status Solidi (a) 35 (1976) 403.

    Google Scholar 

  18. D. L. Holt, Trans. Metall. Soc. AIME 242 (1968) 25.

    Google Scholar 

  19. I. I. Novikov, V. K. Portnoy and T. E. Terentieva, Acta Metall. 25 (1977) 1139.

    Google Scholar 

  20. P. Shariat, R. B. Vastava and T. G. Langdon, ibid. 30 (1982) 285.

    Google Scholar 

  21. Y. Motohashi and T. Shibata, J. Fac. Eng. Ibaraki Univ. 30 (1982) 49.

    Google Scholar 

  22. K. Matsuki, N. Hariyama, M. Tokizawa and Y. Murakami, Metal Sci. 17 (1983) 503.

    Google Scholar 

  23. R. I. Kuznetsova, N. N. Zhukov, O. A. Kaibyshev and R. Z. Valiev, Phys. Status Solidi (a) 70 (1982) 371.

    Google Scholar 

  24. F. A. Mohamed and T. G. Langdon, Acta Metall. 23 (1975) 117.

    Google Scholar 

  25. T. G. Langdon, Metall. Trans. 3 (1972) 797.

    Google Scholar 

  26. R. L. Bell, C. Graeme-Barber and T. G. Langdon, Trans. Metall. Soc. AIME 239 (1967) 1821.

    Google Scholar 

  27. I. I. Novikov, V. K. Portnoy and V. S. Levchenko, Acta Metall. 29 (1981) 1077.

    Google Scholar 

  28. P. Shariat, R. B. Vastava and T. G. Langdon, in “icrostructural Science”, Vol. 10, edited byW. E. White, J. H. Richardson and J. L. McCall (Elsevier, New York, 1982) p. 337.

    Google Scholar 

  29. S. W. Zehr and W. A. Backofen, Trans. ASM 61 (1968) 300.

    Google Scholar 

  30. G. L. Dunlop and D. M. R. Taplin, J. Mater. Sci. 7 (1972) 316.

    Google Scholar 

  31. V. E. Ivanov, I. I. Papirov, G. F. Tikhinskii, V. S. Shokurov, L. A. Kornienko and A. A. Nikolaenko, Dokl. Akad. Nauk SSSR 256 (1981) 73.

    Google Scholar 

  32. D. S. Wilkinson and C. H. Cáceres, Acta Metall. 32 (1984) 1335.

    Google Scholar 

  33. M. C. Pandey, J. Wadsworth and A. K. Mukherjee, Scripta Metall. 19 (1985) 1229.

    Google Scholar 

  34. O. N. Senkov and M. M. Myshlyaev, Acta Metall. 34 (1986) 97.

    Google Scholar 

  35. F. A. Mohamed, M. M. I. Ahmed and T. G. Langdon, Metall. Trans. A 8 (1977) 933.

    Google Scholar 

  36. H. Ishikawa, D. G. Bhat, F. A. Mohamed and T. G. Langdon, ibid. 8 (1977) 523.

    Google Scholar 

  37. M. M. I. Ahmed, F. A. Mohamed and T. G. Langdon, J. Mater. Sci. 14 (1979) 2913.

    Google Scholar 

  38. D. W. Livesey and N. Ridley, ibid. 17 (1982) 2257.

    Google Scholar 

  39. D. A. Miller and T. G. Langdon, Metall. Trans. A 9 (1978) 1688.

    Google Scholar 

  40. R. N. Stevens, Trans. Metall. Soc. AIME 236 (1966) 1762.

    Google Scholar 

  41. A. Gittins, ibid. 239 (1967) 922.

    Google Scholar 

  42. L. K. L. Falk, P. R. Howell, G. L. Dunlop and T. G. Langdon, Acta Metall. 34 (1986) 1203.

    Google Scholar 

  43. R. G. Fleck, D. M. R. Taplin and C. J. Beevers, ibid. 23 (1975) 415.

    Google Scholar 

  44. D. W. Livesey and N. Ridley, Metall. Trans. A 13 (1982) 1619.

    Google Scholar 

  45. J. Pilling, Mater. Sci. Tech. 1 (1985) 461.

    Google Scholar 

  46. A. H. Chokshi, Metall. Trans. A 18 (1987) 63.

    Google Scholar 

  47. A. K. Ghosh, in “Deformation of Polycrystals: Mechanisms and Microstructures,” edited by N. Hansen, A. Horsewell, T. Leffers and H. Lilholt (Risø National Laboratory, Roskilde, Denmark, 1981) p. 277.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from Mechanical Engineering Department, Nanjing Aeronautical Institute, Nanjing, Jiang-su 210002, People's Republic of China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, ZR., Chokshi, A.H. & Langdon, T.G. An investigation of grain boundary sliding in superplasticity at high elongations. J Mater Sci 23, 2712–2722 (1988). https://doi.org/10.1007/BF00547441

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00547441

Keywords

Navigation