Skip to main content
Log in

Comparative analysis of microstructures formed in highly alloyed aluminum alloy during high-temperature equal-channel angular pressing and multidirectional forging

  • Physico-Chemical Principles of Materials Development
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

A comparative analysis of structural changes in the high-strength aluminum 7475 alloy subjected to equal channel angular pressing (ECAP) and multidirectional forging (MDF) at a temperature of 400°C (~0.75 T m) is performed. It is shown that both ECAP and MDF of the present alloy led to significant grain refinement. The main mechanism of structural changes is mainly related to the formation of deformation bands such as geometrically necessary boundaries and microshear bands, which propagate in various directions and fragment initial grains, thus developing in “continuous” dynamic recrystallization. Comparison between ECAP and MDF performed to roughly the same strain values reveals the formation of similar micro-structures, which are characterized by close values of the average misorientation angles and the fractions of high-angle boundaries. It is also found that, irrespective of the deformation scheme, the grain size developed in both ECAP and MDF obeys a common dependence (unique function) on Zener–Hollomon parameter Z. Microstructure evolution in the highly alloyed aluminum alloy during high-temperature severe plastic deformation and the effect of severe plastic deformation techniques on grain refinement are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Valiev, R.Z., Korznikov, A.V., and Mulyukov, R.R., Structure and properties of ultrafine-grained materials produced by severe plastic deformation, Mater. Sci. Eng. A, 1993, vol. 168, pp. 141–148.

    Article  Google Scholar 

  2. Valiev, R.Z., Islamgaliev, R.K., and Alexandrov, I.V., Bulk nanostructured materials from severe plastic deformation, Progr. Mater. Sci., 2000, vol. 45, pp. 103–189.

    Article  CAS  Google Scholar 

  3. Markushev, M.V. and Murashkin, M.Yu., Mechanical properties of submicrocrystalline aluminum alloys after severe plastic deformation by angular extrusion, Phys. Met. Metallogr., 2000, vol. 90, pp. 506–516.

    Google Scholar 

  4. Horita, Z., Fujinami, T., Nemoto, M., and Langdon, T.G., Improvement of mechanical properties for Al alloys using equal-channel angular pressing, J. Mater. Proc. Technol., 2001, vol. 117, pp. 288–292.

    Article  CAS  Google Scholar 

  5. Zhu, Y.T., Lowe, T.C., and Langdon, T.G., Performance and applications of nanostructured materials produced by severe plastic deformation, Scripta Mater., 2004, vol. 51, pp. 825–830.

    Article  CAS  Google Scholar 

  6. Mulyukov, R.R., Nazarov, A.A., and Imaev, R.M., Deformational methods of material nanostructuring: Premises, history, state of the art, and prospects, Russ. Phys. J., 2008, vol. 51, no. 5, pp. 492–504.

    Article  Google Scholar 

  7. Avtokratova, E., Sitdikov, O., Markushev, M., and Mulyukov, R., Extraordinary high-strain rate superplasticity of severely deformed Al–Mg–Sc–Zr alloy, Mater. Sci. Eng. A, 2012, vol. 538, pp. 386–390.

    Article  CAS  Google Scholar 

  8. Langdon, T.G., Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement, Acta Mater., 2013, vol. 61, pp. 7035–7059.

    Article  CAS  Google Scholar 

  9. Humphreys, F.J., Prangnell, P.B., Bowen, J.R., Gholinia, A., and Harris, C., Developing stable fine-grain microstructures by large strain deformation, Philos. Trans. Royal Soc. (London): A, 1999, vol. 357, pp. 1663–1681.

    Article  CAS  Google Scholar 

  10. Belyakov, A., Sakai, T., Miura, H., and Tsuzaki, K., Grain refinement in copper under large strain deformation, Philos. Mag. A, 2001, vol. 81, pp. 2629–2643.

    Article  CAS  Google Scholar 

  11. Goloborodko, A., Sitdikov, O., Sakai, T., Kaibyshev, R., and Miura, H., Effect of pressing temperature on finegrained structure formation in 7475 aluminum alloy during ECAP, Mater. Sci. Eng. A, 2004, vol. 381, pp. 121–128.

    Article  Google Scholar 

  12. Apps, P.J., Berta, M., and Prangnell, P.B., The effect of dispersoids on the grain refinement mechanisms during deformation of aluminum alloys to ultra-high strains, Acta Mater., 2005, vol. 53, pp. 499–511.

    Article  CAS  Google Scholar 

  13. Kobayashi, C., Sakai, T., Belyakov, A., and Miura, H., Ultrafine grain development in copper during multidirectional forging at 195 K, Philos. Mag. Lett., 2007, vol. 87, pp. 751–766.

    Article  CAS  Google Scholar 

  14. Mazurina, I., Sakai, T., Miura, H., Sitdikov, O., and Kaibyshev, R., Grain refinement in aluminum alloy 2219 during ECAP at 250°C, Mater. Sci. Eng. A, 2008, vol. 473, pp. 297–305.

    Article  Google Scholar 

  15. Sakai, T., Belyakov, A., and Miura, H., Ultrafine grain formation in ferritic stainless steel during severe plastic deformation, Metallur. Mater. Trans. A, 2008, vol. 39, pp. 2206–2214.

    Article  Google Scholar 

  16. Sitdikov, O., Sakai, T., Miura, H., and Hama, C., Temperature effect on fine-grained structure formation in high-strength Al alloy 7475 during hot severe deformation, Mater. Sci. Eng. A, 2009, vol. 516, pp. 180–188.

    Article  Google Scholar 

  17. Mazurina, I., Sakai, T., Miura, H., Sitdikov, O., and Kaibyshev, R., Partial grain refinement in Al–3% Cu alloy during ECAP at elevated temperatures, Mater. Trans., 2009, vol. 50, pp. 101–110.

    Article  CAS  Google Scholar 

  18. Markushev, M.V., On the effectiveness of some methods of severe plastic deformation for bulk nanomaterials processing, Letters on Materials, 2011, vol. 1, no. 1, pp. 36–42.

    Google Scholar 

  19. Sitdikov, O., Krymsky, S., Markushev, M., Avtokratova, E., and Sakai, T., Effect of heat treatment on nanostructuring in high-strength aluminum alloy by severe plastic deformation, Rev. Adv. Mater. Sci., 2012, vol. 31, pp. 62–67.

    CAS  Google Scholar 

  20. Sitdikov, O., Avtokratova, E., Sakai, T., and Tsuzaki, K., Ultrafine-grain structure formation in an Al-Mg-Sc alloy during warm ECAP, Metallur. Mater. Trans. A, 2013, vol. 44, pp. 1087–1100.

    Article  CAS  Google Scholar 

  21. Farshidi, M.H., Kazeminezhad, M., and Miyamoto, H., Microstructural evolution of aluminum 6061 alloy through tube channel pressing, Mater. Sci. Eng. A, 2014, vol. 615, pp. 139–147.

    Article  CAS  Google Scholar 

  22. Sitdikov, O.Sh., Effect of multidirectional forging on the fine-grained structure development in a highstrength aluminum alloy, Letters on Materials, 2013, vol. 3, no. 3, pp. 215–220.

    Google Scholar 

  23. Sakai, T., Miura, H., Goloborodko, A., and Sitdikov, O., Continuous dynamic recrystallization during the transient severe deformation of aluminum alloy 7475, Acta Mater., 2009, vol. 57, pp. 153–162.

    Article  CAS  Google Scholar 

  24. Goloborodko, A., Sitdikov, O., Sakai, T., Kaibyshev, R., and Miura, H., Grain refinement in as-cast 7475 aluminum alloy under hot equal-channel angular pressing, Mater. Trans., 2003, vol. 44, pp. 766–774.

    Article  CAS  Google Scholar 

  25. Kim, H.S., Evaluation of strain rate during equalchannel angular pressing, J. Mater. Res., 2002, vol. 17, pp. 172–179.

    Article  CAS  Google Scholar 

  26. Sitdikov, O.Sh., Formation of fine-grained structure during high-temperature severe plastic deformation of high-strength aluminum alloy (overview), Letters on Materials, 2015, vol. 5, pp. 74–81.

    Google Scholar 

  27. Mazurina, I., Sakai, T., Miura, H., Sitdikov, O., and Kaibyshev, R., Effect of deformation temperature on microstructure evolution in aluminum alloy 2219 during hot ECAP, Mater. Sci. Eng. A, 2008, vol. 486, pp. 662–671.

    Article  Google Scholar 

  28. Frost, H.J. and Ashby, M.F., Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, New York: Pergamon, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Sh. Sitdikov.

Additional information

Original Russian Text © O.Sh. Sitdikov, 2015, published in Perspektivnye Materialy, 2015, No. 9, pp. 5–16.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sitdikov, O.S. Comparative analysis of microstructures formed in highly alloyed aluminum alloy during high-temperature equal-channel angular pressing and multidirectional forging. Inorg. Mater. Appl. Res. 7, 149–157 (2016). https://doi.org/10.1134/S2075113316020210

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113316020210

Keywords

Navigation