Skip to main content
Log in

Strain hardening and microstructure evolution in ECAP-processed ultrafine-grained metals: a comparative study of copper, aluminum, and magnesium alloys

  • The Physics of Metal Plasticity: in honor of Professor Hussein Zbib
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study presents a comparative analysis of texture evolution, deformation mechanisms, and dislocation density evolution in pure copper, Al-1100 alloy, and Mg AZ31 alloy subjected to equal-channel angular pressing (ECAP). For that purpose, a unique grain fragmentation model combining continuum dislocation dynamics with Taylor-Lin crystal plasticity is presented. Copper and aluminum alloys, with their face-centered cubic (FCC) crystal structures, exhibit similar micromechanical processes during grain fragmentation. The post-ECAP textures for both materials align with ideal orientations, indicating a rotation of grains around the center of the flow direction. On the other hand, the magnesium AZ31 alloy, with its hexagonal close-packed (HCP) crystal structure, displays a rolling-like texture. Al-1100 showed high dislocation multiplication rate favored by dislocation glide, while Mg AZ31 displayed slower dislocation density evolution at 200 °C which can be associated with dynamic recrystallization and twinning low activity. Indeed, driven by elevated temperatures, dynamic recrystallization could form new grains, resulting in a gradual increase in dislocation density. Furthermore, the comparison of average grain size reduction rates aligns with the dislocation density findings, with aluminum alloys experiencing significant grain fragmentation and Mg AZ31 alloy undergoing the slowest rate of grain fragmentation. The employed continuum dislocation dynamics (CDD) coupled with a crystal plasticity modeling approach enables the prediction of material responses, offering a powerful tool for understanding and optimizing deformation behavior. Further research opportunities lie in exploring additional factors and refining the understanding of deformation behavior in FCC and HCP materials, as well as expanding the applicability of the modeling approach to other materials and processing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Data availability

The data and code associated with this manuscript are available upon request. Interested readers can obtain access to the data and code by contacting the authors directly. We are committed to promoting transparency and facilitating reproducibility in scientific research. Therefore, we encourage researchers to reach out to us for any inquiries or requests regarding the availability of the data and code utilized in this study.

Notes

  1. The Hall–Petch stress is inversely proportional to the square root of the grain size D and can be expressed as $${\tau }_{HP}^{s}={K}^{s}/\sqrt{D}$$, where $${K}^{s}$$ is the Hall–Petch parameter related to each slip system.

References

  1. Azushima A et al (2008) Severe plastic deformation (SPD) processes for metals. CIRP Ann - Manuf Technol 57(2):716–735. https://doi.org/10.1016/j.cirp.2008.09.005

    Article  Google Scholar 

  2. Segal VM (1999) Equal channel angular extrusion: from macromechanics to structure formation. Mater Sci Eng A 271:322–333

    Article  Google Scholar 

  3. Segal VM (1995) Materials processing by simple shear. Mater Sci Eng A 197(2):157–164. https://doi.org/10.1016/0921-5093(95)09705-8

    Article  Google Scholar 

  4. Valiev RZ, Langdon TG (2006) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 51(7):881–981. https://doi.org/10.1016/j.pmatsci.2006.02.003

    Article  CAS  Google Scholar 

  5. Horita Z, Fujinami T, Langdon TG (2001) The potential for scaling ECAP: Effect of sample size on grain refinement and mechanical properties. Mater Sci Eng A 318(1–2):34–41. https://doi.org/10.1016/S0921-5093(01)01339-9

    Article  Google Scholar 

  6. El-Danaf EA (2008) Texture evolution and fraction of favorably oriented fibers in commercially pure aluminum processed to 16 ECAP passes. Mater Sci Eng A 492(1–2):141–152. https://doi.org/10.1016/j.msea.2008.03.008

    Article  CAS  Google Scholar 

  7. Khan AS, Meredith CS (2010) Thermo-mechanical response of Al 6061 with and without equal channel angular pressing (ECAP). Int J Plast 26(2):189–203. https://doi.org/10.1016/j.ijplas.2009.07.002

    Article  CAS  Google Scholar 

  8. Beyerlein IJ, Tóth LS (2009) Texture evolution in equal-channel angular extrusion. Prog Mater Sci 54(4):427–510. https://doi.org/10.1016/j.pmatsci.2009.01.001

    Article  CAS  Google Scholar 

  9. Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu Y (2016) Producing bulk ultrafine-grained materials by severe plastic deformation: ten years later. Jom 68(4):1216–1226. https://doi.org/10.1007/s11837-016-1820-6

    Article  CAS  Google Scholar 

  10. Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1997) The process of grain refinement in equal-channel angular pressing. Acta Mater 46(9):3317–3331. https://doi.org/10.1016/S1359-6454(97)00494-1

    Article  Google Scholar 

  11. Meredith CS, Khan AS (2012) Texture evolution and anisotropy in the thermo-mechanical response of UFG Ti processed via equal channel angular pressing. Int J Plast 30–31:202–217. https://doi.org/10.1016/j.ijplas.2011.10.006

    Article  CAS  Google Scholar 

  12. Toth LS, Gu C (2014) Ultrafine-grain metals by severe plastic deformation. Mater Charact 92:1–14. https://doi.org/10.1016/j.matchar.2014.02.003

    Article  CAS  Google Scholar 

  13. Valiev RZZ, Korznikov AV, Mulyukov RR (1993) Structure and properties of ultrafine-grained materials produced by severe plastic deformation. Mater. Sci. Eng. A 168(2):141–148. https://doi.org/10.1016/0921-5093(93)90717-S

    Article  Google Scholar 

  14. Purcek G et al (2009) Mechanical and wear properties of ultrafine-grained pure Ti produced by multi-pass equal-channel angular extrusion. Mater Sci Eng A 517(1–2):97–104. https://doi.org/10.1016/J.MSEA.2009.03.054

    Article  Google Scholar 

  15. Krasilnikov NA, Lojkowski W, Pakiela Z, Kurzydlowski KJ (2006) Mechanical properties and deformation behaviour of ultra-fine grained nickel. Solid State Phenom 114:79–84. https://doi.org/10.4028/www.scientific.net/SSP.114.79

    Article  CAS  Google Scholar 

  16. Gzyl M, Rosochowski A, Boczkal S, Olejnik L (2015) The role of microstructure and texture in controlling mechanical properties of AZ31B magnesium alloy processed by I-ECAP. Mater Sci Eng A 638:20–29. https://doi.org/10.1016/J.MSEA.2015.04.055

    Article  CAS  Google Scholar 

  17. Chinh NQ et al (2009) Developing a strategy for the processing of age-hardenable alloys by ECAP at room temperature. Mater Sci Eng A 516(1–2):248–252. https://doi.org/10.1016/J.MSEA.2009.03.049

    Article  Google Scholar 

  18. Gholinia A, Prangnell PB, Markushev MV (2000) Effect of strain path on the development of deformation structures in severely deformed aluminium alloys processed by ECAE. Acta Mater 48(5):1115–1130. https://doi.org/10.1016/S1359-6454(99)00388-2

    Article  CAS  Google Scholar 

  19. Sun PL, Kao PW, Chang CP (2004) “Effect of deformation route on microstructural development in aluminum processed by equal channel angular extrusion. Metall Mater Trans A Phys Metall Mater Sci 35(4):1359–1368. https://doi.org/10.1007/s11661-004-0311-5

    Article  Google Scholar 

  20. Suwas S, Arruffat-Massion R, Tóth LS, Fundenberger JJ, Eberhardt A, Skrotzki W (2006) Evolution of crystallographic texture during equal channel angular extrusion of copper: the role of material variables. Metall Mater Trans A Phys Metall Mater Sci, 37(3):739–753 https://doi.org/10.1007/s11661-006-0046-6

  21. Alexander DJ, Beyerlein IJ (2005) Anisotropy in mechanical properties of high-purity copper processed by equal channel angular extrusion. Mater Sci Eng A 410–411:480–484. https://doi.org/10.1016/j.msea.2005.08.149

    Article  CAS  Google Scholar 

  22. Lapovok R, Timokhina I, McKenzie PWJ, O’Donnell R (2008) Processing and properties of ultrafine-grain aluminium alloy 6111 sheet. J Mater Process Technol 200(1–3):441–450. https://doi.org/10.1016/j.jmatprotec.2007.08.083

    Article  CAS  Google Scholar 

  23. Reihanian M, Ebrahimi R, Tsuji N, Moshksar MM (2008) Analysis of the mechanical properties and deformation behavior of nanostructured commercially pure Al processed by equal channel angular pressing (ECAP). Mater Sci Eng A 473(1–2):189–194. https://doi.org/10.1016/j.msea.2007.04.075

    Article  CAS  Google Scholar 

  24. Esmaeili A, Shaeri MH, Noghani MT, Razaghian A (2018) Fatigue behavior of AA7075 aluminium alloy severely deformed by equal channel angular pressing. J Alloys Compd 757:324–332. https://doi.org/10.1016/J.JALLCOM.2018.05.085

    Article  CAS  Google Scholar 

  25. Stolyarov VV, Lapovok R (2004) Effect of backpressure on structure and properties of AA5083 alloy processed by ECAP. J Alloys Compd 378(233–236):2004. https://doi.org/10.1016/j.jallcom.2003.10.084

    Article  CAS  Google Scholar 

  26. Semiatin SL, Segal VM, Goforth RE, Frey ND, DeLo DP (1999) Workability of commercial-purity titanium and 4340 steel during equal channel angular extrusion at cold-working temperatures. Metall Mater Trans A Phys Metall Mater Sci 30(5):1425–1435. https://doi.org/10.1007/s11661-999-0290-73

    Article  Google Scholar 

  27. Yamashita A, Horita Z, Langdon TG (2001) Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation. Mater Sci Eng A 300(1–2):142–147. https://doi.org/10.1016/S0921-5093(00)01660-9

    Article  Google Scholar 

  28. Kwak EJ, Bok CH, Seo MH, Kim T-S, Kim HS (2008) Processing and mechanical properties of fine grained magnesium by equal channel angular pressing. Mater Trans 49(5):1006–1010. https://doi.org/10.2320/matertrans.MC200725

    Article  CAS  Google Scholar 

  29. Mabuchi M, Ameyama K, Higashi K, Iwasaki H (1999) Low temperature superplasticity of AZ91 magnesium alloy with non-equilibrium grain boundaries. Acta Mater 47(7):2047–2057

    Article  CAS  Google Scholar 

  30. Xia K, Wang JT, Wu X, Chen G, Gurvan M (2005) Equal channel angular pressing of magnesium alloy AZ31. Mater Sci Eng A 410–411:324–327. https://doi.org/10.1016/j.msea.2005.08.123

    Article  CAS  Google Scholar 

  31. CF Gu, LS Tóth, DP Field, JJ Fundenberger, YD Zhang (2013) Room temperature equal-channel angular pressing of a magnesium alloy. Acta Mater 61(8):3027–3036. https://doi.org/10.1016/j.actamat.2013.01.063

    Article  CAS  Google Scholar 

  32. Tan Y, Li W, Hu W, Shi X, Tian L (2019) The effect of ECAP temperature on the microstructure and properties of a rolled rare earth magnesium alloy. Materials (Basel). https://doi.org/10.3390/ma12091554

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cheng W, Tian L, Ma S, Bai Y, Wang H (2017) Influence of equal channel angular pressing passes on the microstructures and tensile properties of Mg-8Sn-6Zn-2Al alloy. Materials Basel. https://doi.org/10.3390/ma10070708

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dogan E, Karaman I, Ayoub G, Kridli G (2014) Reduction in tension–compression asymmetry via grain refinement and texture design in Mg–3Al–1Zn sheets. Mater Sci Eng A 610:220–227. https://doi.org/10.1016/J.MSEA.2014.04.112

    Article  CAS  Google Scholar 

  35. Muzyk M, Pakiela Z, Kurzydlowski KJ (2011) Ab initio calculations of the generalized stacking fault energy in aluminium alloys. Scr Mater 64(9):916–918. https://doi.org/10.1016/J.SCRIPTAMAT.2011.01.034

    Article  CAS  Google Scholar 

  36. Hansen N, Barlow CY (2014) Plastic deformation of metals and alloys. Phys Metall Fifth Ed 1:1681–1764. https://doi.org/10.1016/B978-0-444-53770-6.00017-4

    Article  Google Scholar 

  37. Kuhlmann-Wilsdorf D (1989) Theory of plastic deformation: - properties of low energy dislocation structures. Mater Sci Eng A 113(C):1–41. https://doi.org/10.1016/0921-5093(89)90290-6

    Article  Google Scholar 

  38. Bay B, Hansen N, Hughes DA, Kuhlmann-Wilsdorf D (1992) Overview no. 96 evolution of f.c.c. deformation structures in polyslip. Acta Metall Mater 40(2):205–219. https://doi.org/10.1016/0956-7151(92)90296-Q

    Article  CAS  Google Scholar 

  39. Mishra A, Kad BK, Gregori F, Meyers MA (2007) Microstructural evolution in copper subjected to severe plastic deformation: Experiments and analysis. Acta Mater 55(1):13–28. https://doi.org/10.1016/J.ACTAMAT.2006.07.008

    Article  CAS  Google Scholar 

  40. Wei YL et al (2011) Dislocations, boundaries and slip systems in cube grains of rolled aluminium. Scr Mater 65(4):355–358. https://doi.org/10.1016/J.SCRIPTAMAT.2011.05.005

    Article  CAS  Google Scholar 

  41. Kuhlmann-Wilsdorf D (1997) High-strain dislocation patterning, texture formation and shear banding of wavy glide materials in the LEDS theory. Scr Mater 36(2):173–181. https://doi.org/10.1016/S1359-6462(96)00347-8

    Article  CAS  Google Scholar 

  42. Zhang HW, Huang X, Hansen N (2008) Evolution of microstructural parameters and flow stresses toward limits in nickel deformed to ultra-high strains. Acta Mater 56(19):5451–5465. https://doi.org/10.1016/J.ACTAMAT.2008.07.040

    Article  CAS  Google Scholar 

  43. Chinh NQ, Csanádi T, Gubicza J, Valiev RZ, Straumal BB, Langdon TG (2011) The effect of grain boundary sliding and strain rate sensitivity on the ductility of ultrafine-grained materials. Mater Sci Forum 667–669:677–682. https://doi.org/10.4028/www.scientific.net/MSF.667-669.677

    Article  Google Scholar 

  44. Hansen N, Huang X, Hughes DA (2001) Microstructural evolution and hardening parameters. Mater Sci Eng A 317(1–2):3–11. https://doi.org/10.1016/S0921-5093(01)01191-1

    Article  Google Scholar 

  45. Zehetbauer M, Seumer V (1993) Cold work hardening in stages IV and V of F.C.C. metals—I. Experiments and interpretation. Acta Metall Mater 41(2):577–588. https://doi.org/10.1016/0956-7151(93)90088-A

    Article  CAS  Google Scholar 

  46. Sakai T, Belyakov A, Kaibyshev R, Miura H, Jonas JJ (2014) Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog Mater Sci 60(1):130–207. https://doi.org/10.1016/J.PMATSCI.2013.09.002

    Article  CAS  Google Scholar 

  47. Chinh NQ, Lendvai J, Ping DH, Hono K (2004) The effect of Cu on mechanical and precipitation properties of Al–Zn–Mg alloys. J Alloys Compd 378(1–2):52–60. https://doi.org/10.1016/J.JALLCOM.2003.11.175

    Article  CAS  Google Scholar 

  48. Moldovan D, Wolf D, Phillpot SR, Haslam AJ (2002) Role of grain rotation during grain growth in a columnar microstructure by mesoscale simulation. Acta Mater 50(13):3397–3414. https://doi.org/10.1016/S1359-6454(02)00153-2

    Article  CAS  Google Scholar 

  49. Farkas D, Mohanty S, Monk J (2008) Strain-driven grain boundary motion in nanocrystalline materials. Mater Sci Eng A 493(1–2):33–40. https://doi.org/10.1016/J.MSEA.2007.06.095

    Article  Google Scholar 

  50. Hansen N (2004) Hall–Petch relation and boundary strengthening. Scr Mater 51(8):801–806. https://doi.org/10.1016/J.SCRIPTAMAT.2004.06.002

    Article  CAS  Google Scholar 

  51. Beyerlein IJ, Lebensohn RA, Tomé CN (2003) Modeling texture and microstructural evolution in the equal channel angular extrusion process. Mater Sci Eng A 345(1–2):122–138. https://doi.org/10.1016/S0921-5093(02)00457-4

    Article  Google Scholar 

  52. Beyerlein IJ, Tomé CN (2007) Modeling transients in the mechanical response of copper due to strain path changes. Int J Plast 23(4):640–664. https://doi.org/10.1016/j.ijplas.2006.08.001

    Article  CAS  Google Scholar 

  53. Tóth LS, Estrin Y, Lapovok R, Gu C (2010) A model of grain fragmentation based on lattice curvature. Acta Mater 58(5):1782–1794. https://doi.org/10.1016/j.actamat.2009.11.020

    Article  CAS  Google Scholar 

  54. Beygelzimer Y (2005) Grain refinement versus voids accumulation during severe plastic deformations of polycrystals: mathematical simulation. Mech Mater 37(7):753–767. https://doi.org/10.1016/j.mechmat.2004.07.006

    Article  Google Scholar 

  55. Nazarov AA et al (2006) Analysis of substructure evolution during simple shear of polycrystals by means of a combined viscoplastic self-consistent and disclination modeling approach. Acta Materialia 54:985–995. https://doi.org/10.1016/j.actamat.2005.10.0255

    Article  CAS  Google Scholar 

  56. Frydrych K, Kowalczyk-Gajewska K (2016) A three-scale crystal plasticity model accounting for grain refinement in fcc metals subjected to severe plastic deformations. Mater Sci Eng A 658:490–502. https://doi.org/10.1016/j.msea.2016.01.101

    Article  CAS  Google Scholar 

  57. Jung KH, Kim DK, Im YT, Lee YS (2013) Prediction of the effects of hardening and texture heterogeneities by finite element analysis based on the Taylor model. Int J Plast 42:120–140. https://doi.org/10.1016/j.ijplas.2012.10.006

    Article  CAS  Google Scholar 

  58. Kalidindi SR, Donohue BR, Li S (2009) Modeling texture evolution in equal channel angular extrusion using crystal plasticity finite element models. Int J Plast 25(5):768–779. https://doi.org/10.1016/j.ijplas.2008.06.008

    Article  CAS  Google Scholar 

  59. Lebensohn RA, Tomé CN (1993) A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys. Acta Metall Mater 41(9):2611–2624. https://doi.org/10.1016/0956-7151(93)90130-K

    Article  CAS  Google Scholar 

  60. Ostapovets A, Šedá P, Jäger A, Lejček P (2012) New misorientation scheme for a visco-plastic self-consistent model: Equal channel angular pressing of magnesium single crystals. Int J Plast 29(1):1–12. https://doi.org/10.1016/j.ijplas.2011.07.006

    Article  CAS  Google Scholar 

  61. Petryk H, Stupkiewicz S (2007) A quantitative model of grain refinement and strain hardening during severe plastic deformation. Mater Sci Eng A 444(1–2):214–219. https://doi.org/10.1016/j.msea.2006.08.076

    Article  CAS  Google Scholar 

  62. Abu Al-Rub RK, Voyiadjis GZ (2006) A physically based gradient plasticity theory. Int J Plast 22(4):654–684. https://doi.org/10.1016/j.ijplas.2005.04.010

    Article  CAS  Google Scholar 

  63. Fleck NA, Hutchinson JW (1997) Strain gradient plasticity, vol 33. Elsevier, Amsterdam

    Google Scholar 

  64. Lim H, Lee MG, Kim JH, Adams BL, Wagoner RH (2011) Simulation of polycrystal deformation with grain and grain boundary effects. Int J Plast 27(9):1328–1354. https://doi.org/10.1016/j.ijplas.2011.03.001

    Article  CAS  Google Scholar 

  65. Ashby MF (1970) The deformation of plastically non-homogeneous materials. Philos Mag 21(170):399–424. https://doi.org/10.1080/14786437008238426

    Article  CAS  Google Scholar 

  66. Ohashi T, Kawamukai M, Zbib H (2007) A multiscale approach for modeling scale-dependent yield stress in polycrystalline metals. Int J Plast 23(5):897–914. https://doi.org/10.1016/j.ijplas.2006.10.002

    Article  CAS  Google Scholar 

  67. Ohashi T (2005) Crystal plasticity analysis of dislocation emission from micro voids. Int J Plast 21(11):2071–2088. https://doi.org/10.1016/j.ijplas.2005.03.018

    Article  CAS  Google Scholar 

  68. Lyu H, Ruimi A, Zbib HM (2015) A dislocation-based model for deformation and size effect in multi-phase steels. Int J Plast 72:44–59. https://doi.org/10.1016/j.ijplas.2015.05.005

    Article  CAS  Google Scholar 

  69. Al-Hadi A, Kobaissy I, Ayoub G, Shehadeh M (2022) Modeling of the tension-compression asymmetry reduction of ECAPed Mg-3Al-1Zn through grain fragmentation. Comput. Mater. Sci. 210(July):111439. https://doi.org/10.1016/j.commatsci.2022.1114393

    Article  Google Scholar 

  70. Kobaissy AAH, Ayoub G, Nasim W, Malik J, Karaman I, Shehadeh M (2020) Modeling of the ECAP induced strain hardening behavior in FCC metals. Metall Mater Trans A Phys Metall Mater Sci 51(10):5453–5474. https://doi.org/10.1007/s11661-020-05971-2

    Article  CAS  Google Scholar 

  71. Kobaissy AH, Ayoub G, Toth LS, Mustapha S, Shehadeh M (2019) Continuum dislocation dynamics-based grain fragmentation modeling. Int J Plast. https://doi.org/10.1016/j.ijplas.2018.11.006

    Article  Google Scholar 

  72. Lin TH (1957) Analysis of elastic and plastic strains of a face-centred cubic crystal. J Mech Phys Solids 5(2):143–149. https://doi.org/10.1016/0022-5096(57)90058-3

    Article  CAS  Google Scholar 

  73. Taylor GI (1938) Plastic strain in metals. J Inst Met 62:307–325

    Google Scholar 

  74. Zouhal N, Molinari A, Tóth LS (1996) Elastic-plastic effects during cyclic loading as predicted by the Taylor-Lin model of polycrystal elasto-viscoplasticity. Int J Plast 12(3):343–360. https://doi.org/10.1016/S0749-6419(96)00011-3

    Article  CAS  Google Scholar 

  75. Asaro RJ, Needleman A (1985) Overview no. 42 Texture development and strain hardening in rate dependent polycrystals. Acta Metall 33(6):923–953. https://doi.org/10.1016/0001-6160(85)90188-9

    Article  CAS  Google Scholar 

  76. Askari H, Maughan MR, Abdolrahim N, Sagapuram D, Bahr DF, Zbib HM (2015) A stochastic crystal plasticity framework for deformation of micro-scale polycrystalline materials. Int J Plast 68:21–33. https://doi.org/10.1016/j.ijplas.2014.11.001

    Article  Google Scholar 

  77. Kermanshahimonfared N, Askari H, Mastorakos I (2020) Plastic behavior of aluminum and dislocation patterning based on continuum dislocation dynamic (CDD). Metall Mater Trans A 51(1):400–409

    Article  CAS  Google Scholar 

  78. Needleman A, Asaro RJ, Lemonds J, Peirce D (1985) Finite element analysis of crystalline solids. Comput Methods Appl Mech Eng 52(1–3):689–708. https://doi.org/10.1016/0045-7825(85)90014-3

    Article  Google Scholar 

  79. Kalidindi SR, Bronkhorst CA, Anand L (1992) Crystallographic texture evolution in bulk deformation processing of FCC metals. J Mech Phys Solids 40(3):537–569. https://doi.org/10.1016/0022-5096(92)80003-9

    Article  CAS  Google Scholar 

  80. Orowan E (1940) Problems of plastic gliding. Proc Phys Soc 52(1):8. https://doi.org/10.1088/0959-5309/52/1/303

    Article  Google Scholar 

  81. Li S, Mishin OV (2014) Analysis of crystallographic textures in aluminum plates processed by equal channel angular extrusion. Metall Mater Trans A Phys Metall Mater Sci 5(4):1689–1692. https://doi.org/10.1007/s11661-014-2195-3

    Article  CAS  Google Scholar 

  82. Kalidindi SR, Bronkhorst CA, Anand L (1992) Crystallographic deformation texture processing evolution in bulk. J Mech Phys Solids 40(3):537–569

    Article  CAS  Google Scholar 

  83. Kalidindi SR (1998) Incorporation of deformation twinning in crystal plasticity models. J Mech Phys Solids 46(2):267–290. https://doi.org/10.1016/S0022-5096(97)00051-3

    Article  CAS  Google Scholar 

  84. Kalidindi SR (1998) Incorporation of deformation twinning in models. Int J Plast 46(2):267–290

    CAS  Google Scholar 

  85. Yapici GG (2004) Severe plastic deformation of difficult-to-work alloys

  86. Arsenlis A, Parks DM (1999) Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density. Acta Mater 47(5):1597–1611. https://doi.org/10.1016/S1359-6454(99)00020-8

    Article  CAS  Google Scholar 

  87. Yapici GG, Karaman I, Luo ZP (2006) Mechanical twinning and texture evolution in severely deformed Ti–6Al–4V at high temperatures. Acta Mater 54(14):3755–3771. https://doi.org/10.1016/J.ACTAMAT.2006.04.007

    Article  CAS  Google Scholar 

  88. Estrin Y, Vinogradov A (2013) Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Mater 61(3):782–817. https://doi.org/10.1016/j.actamat.2012.10.038

    Article  CAS  Google Scholar 

  89. Miodownik M, Godfrey AW, Holm EA, Hughes DA (1999) On boundary misorientation distribution functions and how to incorporate them into three-dimensional models of microstructural evolution. Acta Mater 47(9):2661–2668. https://doi.org/10.1016/S1359-6454(99)00137-8

    Article  CAS  Google Scholar 

  90. Tóth LS, Jonas JJ, Daniel D, Bailey JA (1992) Texture development and length changes in copper bars subjected to free end torsion. Textures Microstruct. 19(4):245–262. https://doi.org/10.1155/TSM.19.245

    Article  Google Scholar 

  91. Vaughan MW et al (2019) Interplay between the effects of deformation mechanisms and dynamic recrystallization on the failure of Mg-3Al-1Zn. Acta Mater 168:448–472. https://doi.org/10.1016/j.actamat.2019.02.010

    Article  CAS  Google Scholar 

  92. Christian JW, Mahajan S (1995) Deformation twinning. Prog Mater Sci 39(1–2):1–157. https://doi.org/10.1016/0079-6425(94)00007-7

    Article  Google Scholar 

  93. Poorganji B, Sepehrband P, Jin H, Esmaeili S (2010) Effect of cold work and non-isothermal annealing on the recrystallization behavior and texture evolution of a precipitation-hardenable aluminum alloy. Scr Mater 63(12):1157–1160. https://doi.org/10.1016/j.scriptamat.2010.08.014

    Article  CAS  Google Scholar 

  94. Hirsch J, Al-Samman T (2013) Superior light metals by texture engineering: optimized aluminum and magnesium alloys for automotive applications. Acta Mater 61(3):818–843. https://doi.org/10.1016/j.actamat.2012.10.044

    Article  CAS  Google Scholar 

  95. Ayoub G, Rodrigez AK, Shehadeh M, Kridli G, Young JP, Zbib H (2018) Modelling the rate and temperature-dependent behaviour and texture evolution of the Mg AZ31B alloy TRC sheets. Philos Mag 98(4):262–294. https://doi.org/10.1080/14786435.2017.1403054

    Article  CAS  Google Scholar 

  96. Askari H, Young J, Field D, Kridli G, Li D, Zbib H (2014) A study of the hot and cold deformation of twin-roll cast magnesium alloy AZ31. Philos Mag 94(4):381–403. https://doi.org/10.1080/14786435.2013.853884

    Article  CAS  Google Scholar 

  97. Wang Y, Choo H (2014) Influence of texture on Hall-Petch relationships in an Mg alloy. Acta Mater 81:83–97. https://doi.org/10.1016/J.ACTAMAT.2014.08.023

    Article  CAS  Google Scholar 

  98. Hutchinson B, Barnett MR, Ghaderi A, Cizek P, Sabirov I (2009) Deformation modes and anisotropy in magnesium alloy AZ31. Int J Mater Res 100(4):556–563. https://doi.org/10.3139/146.110070

    Article  CAS  Google Scholar 

  99. Hallberg H, Wallin M, Ristinmaa M (2010) Modeling of continuous dynamic recrystallization in commercial-purity aluminum. Mater Sci Eng A 527(4–5):1126–1134. https://doi.org/10.1016/j.msea.2009.09.043

    Article  CAS  Google Scholar 

  100. Hama T, Takuda H (2011) Crystal-plasticity finite-element analysis of inelastic behavior during unloading in a magnesium alloy sheet. Int J Plast 27(7):1072–1092. https://doi.org/10.1016/J.IJPLAS.2010.11.004

    Article  CAS  Google Scholar 

  101. Keyhani A, Roumina R (2018) Dislocation-precipitate interaction map. Comput Mater Sci 141:153–161. https://doi.org/10.1016/j.commatsci.2017.09.036

    Article  CAS  Google Scholar 

  102. O. (American U. of B. Abou Ali Modad and M. Shehadeh, “Modeling dislocation interaction with grain boundaries in martensitic steel

  103. Maciejewski K, Jouiad M, Ghonem H (2013) Dislocation/precipitate interactions in IN100 at 650 °C. Mater Sci Eng A 582:47–54. https://doi.org/10.1016/J.MSEA.2013.06.004

    Article  CAS  Google Scholar 

  104. Li J, Chen H, Fang Q, Jiang C, Liu Y, Liaw PK (2020) Unraveling the dislocation–precipitate interactions in high-entropy alloys. Int J Plast 133:102819. https://doi.org/10.1016/J.IJPLAS.2020.102819

    Article  CAS  Google Scholar 

  105. Wang CY, Cepeda-Jiménez CM, Pérez-Prado MT (2020) Dislocation-particle interactions in magnesium alloys. Acta Mater 194:190–206. https://doi.org/10.1016/J.ACTAMAT.2020.04.055

    Article  CAS  Google Scholar 

  106. Ostapovets A, Serra A (2020) Review of non-classical features of deformation twinning in hcp metals and their description by disconnection mechanisms. Metals. https://doi.org/10.3390/met10091134

    Article  Google Scholar 

  107. Serra A, Bacon DJ (1986) Computer simulation of twin boundaries in the h.c.p. metals. Philos Mag A 54(6):793–804. https://doi.org/10.1080/01418618608244438

    Article  CAS  Google Scholar 

  108. Shehadeh MA, Shatarat NK, Jaber W (2017) Modeling the mechanical response and microstructure evolution of magnesium single crystals under c-axis compression. Comput Mater Sci 138:236–245. https://doi.org/10.1016/j.commatsci.2017.06.022

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the American University of Beirut and the National Council for Scientific Research of Lebanon (CNRS-L) for granting financial fellowship to Ali Al-Hadi Kobaissy to support his doctoral studies. The authors gratefully acknowledge the University of Michigan-Dearborn College of Engineering and Computer Science for granting financial fellowship to Ossama Abou Ali Modad to support his doctoral studies.

Author information

Authors and Affiliations

Authors

Contributions

All persons who meet authorship criteria are listed as authors, and all authors certify that they have participated sufficiently in the work to take public responsibility for the content, including participation in the concept, design, analysis, writing, or revision of the manuscript. Furthermore, each author certifies that this material or similar material has not been and will not be submitted to or published in any other publication before its appearance in the Journal of Materials Science. GA, OAAM, AHK, MTS, and IM were involved in conceptualization, methodology, formal analysis, investigation, resources, data curation, and writing—review and editing. GA and AHK were involved in software. GA, OAAM, and AHK were involved in validation, writing—original draft, and visualization. GA was involved in supervision, project administration, and funding acquisition.

Corresponding author

Correspondence to Georges Ayoub.

Ethics declarations

Conflict of interest

We, the authors of this manuscript, declare that there are no conflicts of interest to disclose that could potentially influence or bias the submitted work. We hereby affirm that we have no financial, professional, personal, or any other relationships or interests that could be perceived as conflicting with the content presented in this manuscript. This statement is made in accordance with the publishing ethics guidelines.

Ethical approval

No experiments involved human tissue.

Additional information

Handling Editor: Tariq Khraishi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayoub, G., Modad, O.A.A., Kobaissy, A.aH. et al. Strain hardening and microstructure evolution in ECAP-processed ultrafine-grained metals: a comparative study of copper, aluminum, and magnesium alloys. J Mater Sci 59, 4995–5024 (2024). https://doi.org/10.1007/s10853-023-08942-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08942-1

Navigation