Skip to main content
Log in

Quantum kinetics approach to calculation of the low field mobility in the hole inversion layers of silicon MOSFET’s

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Analytic expressions for low field mobility have been obtained in the quantized p-type inversion layers. The confining potential is approximated by a triangular quantum well. Main attention is paid to study the dependence of the hole mobility on transverse effective field at different temperatures and concentrations of the ionized impurities. Acoustic and optical phonons, charged impurities, and surface roughness have been adopted as scattering system. Theoretical considerations are based on the quantum kinetic equation and special form of the non-equilibrium distribution function (shifted Fermi distribution). Calculations show that the acoustic phonon limited mobility does not depend on the transverse effective electrical field \(E_\mathrm{eff} \) and has a temperature dependence closer to experiment than known expression for the universal mobility. At the same time, the mobility limited by scattering with optical phonons and surface roughness is proportional to \(E_\mathrm{eff} ^{-1/3}\) and \(E_\mathrm{eff} ^{-2}\), respectively. The mobility limited by scattering by ionized impurities is a weak function of the transverse effective field. Results of the calculations are compared with known experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Remashan, K., Wong, N.A., Chan, K., Sim, S.P., Yang, C.Y.: Modeling inversion-layer carrier mobilities in all regions of MOSFET operation. Solid-State Electron. 46(1), 153–156 (2002). https://doi.org/10.1016/S0038-1101(01)00285-4

    Article  Google Scholar 

  2. Gaubert, P., Teramoto, A.: Carrier mobility in field-effect transistors. In: Pejovic, M.M., Pejovic, M.M. (eds.) Different Types of Field-Effect Transistors: Theory and Applications, pp. 2–25. InTech, Rijeka (2017). https://doi.org/10.5772/65626

    Google Scholar 

  3. Vasilesca, D.: Mobility modeling. Arizona State University. http://manualzz.com/doc/6506074/moblity

  4. Stern, F., Howard, W.E.: Properties of semiconductor surface inversion layers in the electric quantum limit. Phys. Rev. 163(3), 816 (1967). https://doi.org/10.1103/PhysRev.163.816

    Article  Google Scholar 

  5. Gámiz, F., Lopez-Villanueva, J.A., Banqueri, J., Carceller, J.E., Cartujo, P.: Universality of electron mobility curves in MOSFETs: a Monte Carlo study. IEEE Trans. Electron. Devices 42(2), 258–265 (1995). https://doi.org/10.1109/16.370071

    Article  Google Scholar 

  6. Fischetti, M.V., Ren, Z., Solomon, P.M., Yang, M., Rim, K.: Six-band k\(\cdot \)p calculation of the hole mobility in silicon inversion layers: dependence on surface orientation, strain, and silicon thickness. J. Appl. Phys. 94(2), 1079–1095 (2003). https://doi.org/10.1063/1.1585120

    Article  Google Scholar 

  7. Donetti, L., Gamiz, F., Rodriguez, N.: Simulation of hole mobility in two-dimensional systems. Semicond. Sci. Technol. 24(3), 035016 (2009). https://doi.org/10.1088/0268-1242/24/3/035016

    Article  Google Scholar 

  8. Vasileska, D., Ferry, D.K.: Scaled silicon MOSFET’s: universal mobility behavior. IEEE Trans. Electron Devices 44(4), 577–583 (1997). https://doi.org/10.1109/16.563361

    Article  Google Scholar 

  9. Duster, J.S., Liu, Z.H., Ko, P.K, Hu, C.: Temperature effects of the inversion layer electron and hole mobility of MOSFETs from 85 K to 500 K. In: International Conference on Solid State Devices and Materials, Makuhari, pp. 835–837 (1993)

  10. Chaudhry, A., Sangwan, S., Roy, J.N.: Mobility models for unstrained and strained silicon MOSFET’s: a review. Contemp. Eng. Sci. 4, 229–247 (2011)

    Google Scholar 

  11. Lee, K., Choi, J., Sim, S., Kim, C.: Physical understanding of low-field carrier mobility in silicon MOSFET inversion layer. IEEE Trans. Electron Devices 38(8), 1905–1912 (1991). https://doi.org/10.1109/16.119032

    Article  Google Scholar 

  12. Takagi, S., Toriumi, A., Iwase, M., Tango, H.: On the universality of inversion layer mobility in Si MOSFET’s: Part I—Effects of substrate impurity concentration. IEEE Trans. Electron. Devices 41(12), 2357–2362 (1994). https://doi.org/10.1109/16.337449

    Article  Google Scholar 

  13. Gamiz, F., Lopez-Villanueva, J., Banqueri, J., Carceller, J., Cartujo, P.: A comparison of models for phonon scattering in silicon inversion layers. J. Appl. Phys. 77(8), 4128–4129 (1995). https://doi.org/10.1063/1.359500

    Article  Google Scholar 

  14. van Langevelde, R., Klaassen, F.M.: Effect of gate-Field dependent mobility degradation on distortion analysis in MOSFET’s. IEEE Trans. Electron. Devices 44(11), 2044–2052 (1997). https://doi.org/10.1109/16.641382

    Article  Google Scholar 

  15. Takagi, S.: Two-dimensional carrier transport in Si MOSFETs. VLSI Des. 8(1–4), 1–11 (1998). https://doi.org/10.1155/1998/53272

    Article  Google Scholar 

  16. Cheng, B., Woo, J.: Measurement and modeling of the n-channel and p-channel MOSFET’s inversion layer mobility at room and low temperature operation. J. Phys. IV 6(C3), C3–43 (1996). https://doi.org/10.1051/jp4:1996306

    Google Scholar 

  17. Pirovano, A., Lacaita, A.L., Zandler, G., Oberhuber, R.: Explaining the dependences of the hole and electron mobilities in Si inversion layers. IEEE Trans. Electron. Devices 47(4), 718–724 (2000). https://doi.org/10.1109/16.830985

    Article  Google Scholar 

  18. Lundstrom, M.: Fundamentals of Carrier Transport, 2nd edn. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  19. Lim, K.Y., Zhou, X.: A physically-based semi-empirical effective mobility model for MOSFET compact I–V modeling. Solid-State Electron. 45(1), 193–197 (2001). https://doi.org/10.1016/S0038-1101(00)00190-8

    Article  Google Scholar 

  20. Tsague, H.D., Twala, B.: Investigation of carrier mobility degradation effects on MOSFET leakage simulations. Int. J. Comput. 15, 237–247 (2016)

    Google Scholar 

  21. Cristoloveanu, S., Rodriguez, N., Gamiz, F.: Why the universal mobility is not. IEEE Trans. Electron. Devices 57(6), 1327–1333 (2010). https://doi.org/10.1109/TED.2010.2046109

    Article  Google Scholar 

  22. Thomas, S.M.: Electrical characterization of novel silicon MOSFETs and finFETs. Ph.D. Thesis, University of Warwick (2011). https://warwick.ac.uk/fac/sci/physics/research/condensedmatt/silicon/papers/theses/stephen_thomas_phd_thesis.pdf

  23. Oberhuber, R., Zandler, G., Vogl, P.: Sub-band structure and mobility of two-dimensional holes in strained Si/SiGe MOSFET’s. Phys. Rev. B 58(15), 9941 (1998). https://doi.org/10.1103/PhysRevB.58.9941

    Article  Google Scholar 

  24. Takagi, S., Takayanagi, M., Toriumi, A.: Characterization of inversion-layer capacitance of holes in Si MOSFET’s. IEEE Trans. Electron. Devices 46(7), 1446–1450 (1999). https://doi.org/10.1109/16.772489

    Article  Google Scholar 

  25. Jungemann, C.: Improved modified local density approximation for modeling of size quantization in pMOSFETs/C. In: Jungemann, C.D., Nguyen, B., Neinhus, S., Decker, B., Meinerzhagen (eds.) Institute of Electrodynamics and Microelectronics, Bremen, Germany, 4p (2001)

  26. Wang, E.X., Matagne, Ph, Shifren, L., Obradovic, B., Kotlyar, R., Cea, S., Stettler, M., Giles, M.D.: Physics of hole transport in strained silicon MOSFET inversion layers. IEEE Trans. Electron. Devices 53(8), 1840–1851 (2006). https://doi.org/10.1109/TED.2006.877370

    Article  Google Scholar 

  27. Saito, S., Hisamoto, D., Kimura, Y., Sugii, N., Tsuchiya, R., Torii, K., Kimura, S.: Origin of drivability enhancement in scaled pMOSFETs with 45 degree rotated \(\langle 100\rangle \) channels. In: Symposium on VLSI Technology, Tech. Dig. (2006). https://doi.org/10.1109/VLSIT.2006.1705261

  28. Donetti, L., Gámiz, F., Thomas, S., Whall, T.E., Leadley, D.R., Hellström, P.-E., Malm, G.D., Östling, M.: Hole effective mass in silicon inversion layers with different substrate orientations and channel directions. J. Appl. Phys. 110(6), 063711 (2011). https://doi.org/10.1063/1.3639281

    Article  Google Scholar 

  29. Hou, Y.-T., Li, M.-F.: A simple and efficient model for quantization effects of hole inversion layers in MOS devices. IEEE Trans. Electron. Devices 48(12), 2893–2898 (2001). https://doi.org/10.1109/16.974723

    Article  Google Scholar 

  30. Ando, T., Fowler, A.B., Stern, F.: Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54(2), 437 (1982). https://doi.org/10.1103/RevModPhys.54.437

    Article  Google Scholar 

  31. Ferry, D.K., Goodnick, S.M., Bird, J.: Transport in Nanostructures, 2nd edn. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  32. Sze, S.M., Ng, K.K.: Physics of Semiconductor Devices, 3rd edn. Wiley, London (2007)

    Google Scholar 

  33. Boiko, I.I.: Kinetics of Electron Gas Interacting with Fluctuating Potential. Naukova Dumka, Kiev (1993). (in Russian)

    Google Scholar 

  34. Boiko, I.I., Sirenko, Y.M., Vasilopoulos, P.: Dielectric formalism for a quasi-one-dimensional electron gas. I. Quantum transport equation. Phys. Rev. B 43(9), 7216 (1991). https://doi.org/10.1103/PhysRevB.43.7216

    Article  Google Scholar 

  35. Boiko, I.I., Sirenko, Y.M., Vasilopoulos, P.: Dielectric formalism for a quasi-one-dimensional electron gas. II. Dielectric functions and potential correliators. Phys. Rev. B 14(3), 788–797 (1991). https://doi.org/10.1103/PhysRevB.43.7224

    Google Scholar 

  36. Boiko, I.I.: Transport of Carriers in Semiconductors. V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Kyiv (2009). (in Russian)

    Google Scholar 

  37. Kozlovskiy, S.I., Sharan, N.N.: Dilatation deformation potential, drift mobility and piezoresistance in p-type silicon (quantum kinetic approach). J. Comput. Electron. 14(3), 788–797 (2015). https://doi.org/10.1007/s10825-015-0716-y

    Article  Google Scholar 

  38. Kozlovskiy, S.I., Sharan, N.N.: Piezoresistance effect in n-type silicon: from bulk to nanowires. J. Comput. Electron. 13(2), 515–528 (2014). https://doi.org/10.1007/s10825-014-0563-2

    Article  Google Scholar 

  39. Yu, P.Y., Cardona, M.: Fundamentals of Semiconductors: Physics and Material Properties, 4th edn. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  40. Takagi, S.A., Iwase, M., Tango, H.: On the universality of inversion layer mobility in Si MOSFET’s: Part II—effects of surface orientation. IEEE Trans. Electron. Dev. 41(12), 2363–2368 (1994). https://doi.org/10.1109/16.337450

    Article  Google Scholar 

  41. Schroder, D.K.: Semiconductor Material and Device Characterization. Wiley, London (2006)

    Google Scholar 

  42. Watt, J.T., Plummer, J.D.: Universal mobility-field curves for electrons and holes in MOS inversion layers. In: Symposium on VLSI Technology, pp. 81–82 (1987)

  43. Chen, K., Wann, H.C., Ko, P.K., Hu, C.: The impact of device scaling and power supply change on cmos gate performance. IEEE Electron. Device Lett. 17(5), 202–204 (1996). https://doi.org/10.1109/55.491829

    Article  Google Scholar 

  44. Knezevic, I., Ramayya, E.B., Vasileska, D., Goodnick, S.M.: Diffusive transport in quasi-2D and quasi-1D electron systems. J. Comput. Theor. Nanosci. 6(8), 1725–1753 (2009). https://doi.org/10.1166/jctn.2009.1240

    Article  Google Scholar 

  45. Jin, S., Fischetti, M.V., Tang, T.-W.: Modeling of surface-roughness scattering in ultrathin-body SOI MOSFETs. IEEE Trans. Electron. Devices 54(9), 2191–2203 (2007). https://doi.org/10.1109/TED.2007.902712

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank to Dr. M. Lisianskiy for valuable help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Kozlovskiy.

Appendix

Appendix

The Airy functions A(z) allow the exact analytical solution of the Schrödinger equation in triangular quantum well [30, 31].

$$\begin{aligned} Ai\left( z \right) =\frac{1}{\pi }\int \limits _0^\infty {\cos \left( {\frac{t^{3}}{3}+zt} \right) } \mathrm{d}t. \end{aligned}$$
(30)

In this case the envelope functions can be written as

$$\begin{aligned}&\xi _{n(m)} \left( z \right) =\frac{1}{\sqrt{I_{n(m)} L_E^{(v)} }}Ai\left( {\frac{z}{L_E^{(v)} }+a_{n(m)} } \right) , \end{aligned}$$
(31)
$$\begin{aligned}&I_{n(m)} =\int \limits _0^\infty {Ai\left( {y+a_{n(m)} } \right) ^{2}\mathrm{d}y} , \end{aligned}$$
(32)

here \(n,m=1,2,3, \ldots \) are the quantum numbers.

At scattering by acoustic and optic phonons integration (11) gives the overlap integrals in the following forms

$$\begin{aligned} A_{nm}^{(A)}= & {} \frac{1}{I_n I_m }\left[ {\int \limits _0^\infty {Ai\left( {y+a_n } \right) Ai\left( {y+a_m } \right) \mathrm{d}y} } \right] ^{2}\simeq \delta _{nm} ,\nonumber \\ \end{aligned}$$
(33)
$$\begin{aligned} A_{v,n,m}^{(O)}= & {} \frac{A_{nm} }{L_E^{(v)} },\nonumber \\ A_{nm}= & {} \frac{1}{2\pi I_n I_m } \int \limits _{-\infty }^\infty \left| \int \limits _0^\infty \exp \left( {-ixy} \right) Ai\left( {y+a_n } \right) \right. \nonumber \\&\left. Ai\left( {y+a_m } \right) \mathrm{d}y \right| ^{2}\mathrm{d}x , \end{aligned}$$
(34)

Here \(A_{11} =0.417\), \(A_{12} =0.158\), \(A_{22} =0.291\), \(A_{23} =0.135\), \(A_{33} =0.236\).

At scattering by charged scattering centers the overlap integral is a function of the transfer momentum [30, 44]

$$\begin{aligned} A_{n,m}^{(I)} \left( {q_\bot } \right) =\int \limits _0^\infty {\exp \left( {-\left| {q_\bot } \right| z} \right) \xi _n \left( z \right) \xi _m \left( z \right) } \mathrm{d}z. \end{aligned}$$
(35)

Using expression (31) and (32) we can write integral (35) in the following form

$$\begin{aligned} A_{v,n,m}^{(I)} (q_\bot )= & {} \frac{1}{I_n I_m }\int \limits _0^\infty \exp \left( {-\left| {\vec {q}_\bot } \right| L_E^{(v)} y} \right) \nonumber \\&Ai\left( {y+a_n } \right) Ai\left( {y+a_m } \right) \mathrm{d}y. \end{aligned}$$
(36)

At scattering by surface roughness the overlap integral is [17, 30, 45]

$$\begin{aligned} A_{nm}^{(\mathrm{SR})}= & {} \left[ {\left. {\frac{\hbar ^{2}}{2m_{zz}^{(v)} }\frac{\mathrm{d}\xi _n }{\mathrm{d}z}\frac{\mathrm{d}\xi _m }{\mathrm{d}z}} \right| _{z=0} } \right] ^{2}\nonumber \\= & {} \left[ {\left. {eE_\mathrm{eff} L_E^{(v)3}\frac{\mathrm{d}\xi _n }{\mathrm{d}z}\frac{\mathrm{d}\xi _m }{\mathrm{d}z}} \right| _{z=0} } \right] ^{2}=e^{2}E_\mathrm{eff} ^{2}. \end{aligned}$$
(37)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalenko, K.L., Kozlovskiy, S.I. & Sharan, N.N. Quantum kinetics approach to calculation of the low field mobility in the hole inversion layers of silicon MOSFET’s. J Comput Electron 17, 926–933 (2018). https://doi.org/10.1007/s10825-018-1163-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1163-3

Keywords

Navigation