Skip to main content
Log in

A quantum kinetic approach for calculating low-field mobility in black phosphorus crystals and multilayer phosphorene

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Analytic expressions for the low-field mobility have been obtained in black phosphorus crystals and multilayer phosphorene. Acoustic and optical phonons, charged impurities and surface roughness are adopted as the scattering system. Theoretical considerations are based on a quantum kinetic equation and special form of the non-equilibrium distribution function (shifted Fermi distribution). Our calculations reveal that the hole mobility in black phosphorus crystals is limited by scattering with both acoustic and optical phonons over a wide temperature range of 10–400 K. The hole mobility in multilayer phosphorene is thus limited by impurity and optical phonon scattering in this temperature range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Qian, X., Wang, Y., Li, W., Lu, J., Li, J.: Modelling of stacked 2D materials and devices. 2D Mater 2(3), 032003 (2015). https://doi.org/10.1088/2053-1583/2/3/032003

    Article  Google Scholar 

  2. Das, S., Demarteau, M., Roelofs, A.: Ambipolar phosphorene field effect transistor. ACS Nano 8(11), 11730 (2014). https://doi.org/10.1021/nn505868h

    Article  Google Scholar 

  3. Gaddemane, G., Vandenberghe, W.G., Van de Put, M.L., Chen, S., Tiwari, S., Chen, E., Fischetti, M.V.: Theoretical studies of electronic transport in mono- and bi-layer phosphorene: a critical overview. arXiv:1801.08606v1 [cond-mat.mes-hall] (2018)

  4. Takagi, S., Toriumi, A., Iwase, M., Tango, H.: On the universality of inversion layer mobility in Si MOSFET’s: Part II-effects of surface orientation. IEEE Trans. ED 41(12), 2363 (1994). https://doi.org/10.1109/16.337450

    Article  Google Scholar 

  5. Qiao, J., Kong, X., Hu, Z.-X., Yang, F., Ji, W.: High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014). https://doi.org/10.1038/ncomms5475

    Article  Google Scholar 

  6. Wang, Y., Ding, Y.: Electronic structure and carrier mobilities of arsenene and antimonene nanoribbons: a first-principle study. Nanoscale Res. Lett. 10, 254 (2015). https://doi.org/10.1186/s11671-015-0955-7

    Article  Google Scholar 

  7. Jing, Y., Zhang, X., Zhou, Z.: Phosphorene: what can we know from computations? WIREs Comput. Mol. Sci. 6(1), 5 (2016). https://doi.org/10.1002/wcms.1234

    Article  Google Scholar 

  8. Qiao, J., Kong, X., Hu, Z.-X., Yang, F., Ji, W.: High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014). https://doi.org/10.1038/ncomms5475

    Article  Google Scholar 

  9. Fukuoka, S., Taen, T., Osada, T.: Electronic structure and the properties of phosphorene and few-layer black phosphorus. J. Phys. Soc. Jpn. 84, 121004 (2015). https://doi.org/10.7566/JPSJ.84.121004

    Article  Google Scholar 

  10. Xu, Y., Zhang, H., Shao, H., Ni, G., Li, J., Lu, H., Zhang, R., Peng, B., Zhu, Y., Zhu, H., Soukoulis, C.M.: First-principles study on the electronic, optical, and transport properties of monolayer α- and β-GeSe. Phys. Rev. B 96, 245421 (2017). https://doi.org/10.1103/PhysRevB.96.245421

    Article  Google Scholar 

  11. Boiko, I.I., Kozlovskiy, S.I.: Investigation of conductivity and piezoresistance of n-type silicon on basis of quantum kinetic equation and model distribution function. Sens. Actuators A 147, 17 (2008). https://doi.org/10.1016/j.sna.2008.03.002

    Article  Google Scholar 

  12. Liu, H., Du, Y., Deng, Y., Ye, P.D.: Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44, 2732 (2015). https://doi.org/10.1039/C4CS00257A

    Article  Google Scholar 

  13. Boiko, I.I.: Kinetics of Electron Gas Interacting with Fluctuating Potential. Naukova dumka, Kiev (1993). (in Russian)

    Google Scholar 

  14. Boiko, I.I. (ed.): Transport of Carriers in Semiconductors. V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Kyiv (2009). (in Russian)

    Google Scholar 

  15. Knezevic, I., Ramayya, E.B., Vasileska, D., Goodnick, S.M.: Diffusive transport in quasi-2D and quasi-1D electron systems. J. Comput. Theor. Nanosci. 6, 1725 (2009). https://doi.org/10.1166/jctn.2009.1240

    Article  Google Scholar 

  16. Stroscio, M.A., Dutta, M.: Phonons in Nanostructures. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  17. Kozlovskiy, S.I., Sharan, N.N.: Piezoresistance effect in n-type silicon: from bulk to nanowires. J. Comput. Electron. 13(2), 515 (2014). https://doi.org/10.1007/s10825-014-0563-2

    Article  Google Scholar 

  18. Ando, Y., Cappy, A.: Ensemble Monte Carlo simulation for electron transport in quantum wire structures. J. Appl. Phys. 74, 3983 (1993). https://doi.org/10.1063/1.354441

    Article  Google Scholar 

  19. Ferry, D.K., Goodnick, S.M., Bird, J.: Transport in Nanostructures, 2nd edn. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  20. Ando, T., Fowler, A.B., Stern, F.: Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54(2), 437 (1982). https://doi.org/10.1103/RevModPhys.54.437

    Article  Google Scholar 

  21. Jin, S., Fischetti, M.V., Tang, T.-W.: Modeling of surface-roughness scattering in ultrathin-body SOI MOSFETs. IEEE Trans. ED 54(9), 2191 (2007). https://doi.org/10.1109/TED.2007.902712

    Article  Google Scholar 

  22. Narita, S., Terada, S., Mori, S., Muro, K., Akahama, Y., Endo, S.: Far-Infrared cyclotron resonance absorptions in black phosphorus single crystals. J. Phys. Soc. Jpn. 52, 3544 (1983). https://doi.org/10.1143/JPSJ.52.3544

    Article  Google Scholar 

  23. Chang, J., Hobbs, C.: Theoretical study of phosphorene tunneling field effect transistors. Appl. Phys. Lett. 106, 083509 (2015). https://doi.org/10.1063/1.4913842

    Article  Google Scholar 

  24. Jain, A., McGaughey, A.J.H.: Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Sci. Rep. 5, 8051 (2015). https://doi.org/10.1038/srep08501

    Article  Google Scholar 

  25. Asahina, H., Morita, A.: Band structure and optical properties of black phosphorus. J. Phys. C Solid State Phys. 17, 1839 (1984). https://doi.org/10.1088/0022-3719/17/11/006

    Article  Google Scholar 

  26. Akahama, Y., Endo, S., Narita, S.: Electrical properties of black phosphorus single. J. Phys. Soc. Jpn. 52, 2148 (1983). https://doi.org/10.1143/JPSJ.52.2148

    Article  Google Scholar 

  27. Zhang, Y., Rubio, A., Lay, G.L.: Emergent elemental two-dimensional materials beyond graphene. J. Phys. D Appl. Phys. 50(5), 053004 (2017). https://doi.org/10.1088/1361-6463/aa4e8b

    Article  Google Scholar 

  28. Lin, D., Liu, Y., Liang, Z., Lee, H.-W., Sun, J., Wang, H., Yan, K., Xie, J., Cui, Y.: Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotech. 11, 626 (2016). https://doi.org/10.1038/nnano.2016.32

    Article  Google Scholar 

  29. Gillgren, N., Wickramaratne, D., Shi, Y., Espiritu, T., Yang, J., Hu, J., Wei, J., Liu, X., Mao, Z., Watanabe, K., Taniguchi, T., Bockrath, M., Barlas, Y., Lake, R.K., Lau, C.N.: Gate tunable quantum oscillations in air-stable and high mobility few-layer phosphorene heterostructures. 2D Mater (2015). https://doi.org/10.1088/2053-1583/2/1/011001

    Article  Google Scholar 

  30. Li, L., Ye, G.J., Tran, V., Fei, R., Chen, G., Wang, H., Wang, J., Watanabe, K., Taniguchi, T., Yang, L., Chen, X.H., Zhang, Y.: Quantum oscillations in a two-dimensional electron gas in black phosphorus thin films. Nat. Nanotechnol. 10, 608–613 (2015). https://doi.org/10.1038/nnano.2015.91

    Article  Google Scholar 

  31. Xia, F., Wang, H., Jia, Y.: Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014). https://doi.org/10.1038/ncomms5458

    Article  Google Scholar 

  32. Pirovano, A., Lacaita, A.L., Zandler, G., Oberhuber, R.: Explaining the dependences of the hole and electron mobilities in Si inversion layers. IEEE Trans ED 47(4), 718 (2000). https://doi.org/10.1109/16.830985

    Article  Google Scholar 

  33. Das, S., Appenzeller, J.: Screening and interlayer coupling in multilayer MoS2. Phys. Status Solidi RRL 7(4), 268 (2013). https://doi.org/10.1002/pssr.201307015

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Kozlovskiy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalenko, K.L., Kozlovskiy, S.I. & Sharan, N.N. A quantum kinetic approach for calculating low-field mobility in black phosphorus crystals and multilayer phosphorene. J Comput Electron 17, 1549–1556 (2018). https://doi.org/10.1007/s10825-018-1255-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1255-0

Keywords

Navigation