Skip to main content
Log in

Piezoresistance effect in n-type silicon: from bulk to nanowires

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The first order piezoresistance coefficients are examined in the n-type silicon structures with different dimensionality of electron gas: bulk crystal, quantum film (well) and quantum wire. The detail research involves quantum kinetic approach to calculation of the kinetic coefficients (conductivity, mobility, concentration) of electrons in the strained and unstrained states. As scattering system were adopted ionized impurities, longitudinal acoustic phonons and surface roughness. Detailed studies have been carried out for dependences of electron mobility and piezoresistance coefficients on confining dimensions. An alternative explanation is proposed for origin of the giant piezoresistance effect in n-type silicon nanostructures. Comparison of the obtained results shows not only qualitative but even sufficient quantitative agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. He, R.R., Yang, P.D.: Giant piezoresistance effect in silicon nanowires. Nat. Nanotechnol. 1, 42–46 (2006)

    Article  Google Scholar 

  2. Yang, Y., Li, X.: Giant piezoresistance of p-type nano-thick silicon induced by interface electron trapping instead of 2D quantum confinement. Nanotechnology 22, 015501 (2011)

    Article  Google Scholar 

  3. Kang, T.-K.: Evidence for giant piezoresistance effect in n-type silicon nanowire field-effect transistors. Appl. Phys. Lett. 100, 163501 (2012)

    Article  Google Scholar 

  4. Yang, Y., Li, X.: Giant piezoresistance measured in n-type nanothick Si layer that has interface with SiO\(_{2}\). Electron Device Lett. IEEE 32, 411–413 (2011)

    Article  Google Scholar 

  5. Boiko, I.I.: Kinetics of Electron Gas Interacting with Fluctuating Potential. Naukova Dumka, Kiev (1993). (in Russian)

    Google Scholar 

  6. Boiko, I.I., Sirenko, YuM, Vasilopoulos, P.: Dielectric formalism for a quasi-one-dimensional electron gas. I. Quantum transport equation. Phys. Rev. B 43, 7216–7223 (1991)

    Article  Google Scholar 

  7. Boiko, I.I., Sirenko, YuM, Vasilopoulos, P.: Dielectric formalism for a quasi-one-dimensional electron gas. II. Dielectric functions and potential correliators. Phys. Rev. B 43, 7224–7230 (1991)

    Article  Google Scholar 

  8. Boiko, I.I.: Transport of carriers in semiconductors. In: Lashkaryov, V. (ed.) Institute of Semiconductor Physics, NAS of Ukraine, Kyiv (2009) (in Russian)

  9. Boiko, I.I., Kozlovskiy, S.I.: Investigation of conductivity and piezoresistance of n-type silicon on basis of quantum kinetic equation and model distribution function. Sens. Actuat. A 147, 17–33 (2008)

    Article  Google Scholar 

  10. Ferry, D.K., Goodnick, S.M., Bird, J.: Transport in Nanostructures. Cambridge University Press, Cambridge (2009)

  11. Neophytou, N., Paul, A., Lundstrom, M.S., Klimeck, G.: Bandstructure effects in silicon nanowire electron transport. IEEE Trans. Electron Devices 55, 1286–1297 (2008)

    Article  Google Scholar 

  12. Sun, Y., Thompson, S.E., Nishida, T.: Strain Effect in Semiconductors. Theory and Device Applications. Springer, New York (2010)

    Book  Google Scholar 

  13. Esseni, D., Palestri, P., Selmi, L.: Nanoscale MOS Transistors. Semi-classical Transport and Applications. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  14. Maiti, C.K., Chattopadhyay, S., Bera, L.K.: Strained-Si Heterostructure Field Effect Devices. Taylor & Francis, New York (2007)

    Book  Google Scholar 

  15. Maegawa, T., Yamauchi, T., Hara, T., Tsuchiya, H.: Strain effects on electronic band structures in nanoscaled silicon: from bulk to nanowire. IEEE Trans. ED 56, 553–559 (2009)

    Article  Google Scholar 

  16. Tavger, B.A., Demikhovskii, V. Y.: Quantum size effects in semiconducting and semimetallic films. Sov. Phys. Usp. 11, 644–658 (1969)

    Google Scholar 

  17. Datta, S.: Electronic transport in mesoscopic systems. In: Cambridge Studies in Semiconductor Physics and Microelectronic Engineering, vol. 3. Cambridge University Press, Cambridge (1995)

  18. Knezevic, I., Ramayya, E.B., Vasileska, D., Goodnick, S.M.: Diffusive transport in quasi-2D and quasi-1D electron systems. J. Comput. Theor. Nanosci. 6, 1725–1753 (2009)

    Article  Google Scholar 

  19. Sverdlov, V.: Strain-Induced Effects in Advanced MOSFETs. Springer, Wien (2011)

    Book  Google Scholar 

  20. Blakemore, J.S.: Semiconductor Statistics. Pergamon Press, New York (1962)

    MATH  Google Scholar 

  21. Arora, V.K.: Quantum size effect in thin-wire transport. Phys. Rev. B 23, 5611–5612 (1981)

    Article  Google Scholar 

  22. Lee, J., Spector, H.N.: Impurity-limited mobility of semiconducting thin wire. J. Appl. Phys. 54, 3921–3925 (1983)

    Article  Google Scholar 

  23. Yu, P.Y., Cardona, M.: Fundamentals of Semiconductors. Physics and Material Properties. Springer, New York (2002)

    Google Scholar 

  24. Fischetti, M.V., Laux, S.E.: Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys. J. Appl. Phys. 80, 2234 (1996)

    Google Scholar 

  25. Lim, J.-S., Yang, X., Nishida, T., Thompson, S.E.: Measurement of conduction band deformation potential constants using gate direct tunneling current in n-type metal oxide semiconductor field effect transistors under mechanical stress. Appl. Phys. Lett. 89, 073509 (2006)

    Article  Google Scholar 

  26. Smith, C.S.: Piezoresistance effect in germanium and silicon. Phys. Rev. 93, 42–49 (1954)

    Article  Google Scholar 

  27. Schroder, K.: Semiconductor Material and Device Characterization. Wiley, New York (2005)

    Book  Google Scholar 

  28. Heinzel, Th: Mesoscopic Electronics in Solid State Nanostructures. Wiley-VCH. Verlag GmbH & Co., Weinheim (2007)

    Google Scholar 

  29. Colinge, J.-P., Colinge, C.-A.: Physics of Semiconductor Devices. Kluwer Academic publishers, New York (2002)

    Google Scholar 

  30. Taur, Y., Ning, T.H.: Fundamentals of Modern VLSI Devices. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  31. Chu, M., Nishida, T., Lv, X., Mohta, N., Thompson, S.E.: Comparison between high-field piezoresistance coefficients of Si metal-oxide-semiconductor field-effect transistors and bulk Si under uniaxial and biaxial stress. J. Appl. Phys. 103, 113704 (2008)

    Article  Google Scholar 

  32. Jin, S., Fischetti, M.V., Tang, T.-W.: Modeling of electron mobility in gated silicon nanowires at room temperature: surface roughness scattering, dielectric screening and band nonparabolicity. J. Appl. Phys. 102, 083715 (2007)

    Article  Google Scholar 

  33. Ramayya, E.B., Vasileska, D., Goodnick, S.M., Knezevic, I.: Electron transport in silicon nanowires: the role of acoustic phonon confinement and surface roughness scattering. J. Appl. Phys. 104, 063711 (2008)

    Google Scholar 

  34. Sekaric, L., Gunawan, O., Majumdar, A., Liu, X.H., Weinstein, D., Sleight, J.W.: Size-dependent modulation of carrier mobility in top–down fabricated silicon nanowires. Appl. Phys. Lett. 95, 023113 (2009)

    Article  Google Scholar 

  35. Lee, J., Vassell, M.O.: Low-field electron transport in quasi-one-dimensional semiconducting structures. J. Phys. C 17, 2525 (1984)

    Google Scholar 

  36. Fishman, G.: Phonon-limited mobility in a quasi-one-dimensional semiconductor. Phys. Rev. B 36, 7448–7456 (1987)

    Article  Google Scholar 

  37. Ridly, B.K.: Quantum Processes in Semiconductors. Clarendon Press, Oxford (1982)

    Google Scholar 

  38. Boiko, I.I.: Transport phenomena of two-dimensional band carriers with Dirac-like energetic spectrum. Semiconductor Physics, Quantum Electronics and Optoelectronics 15, 129–138 (2012)

    Google Scholar 

  39. Haug, H., Koch, S.W.: Quantum Theory of the Optical and Electronic Properties of Semiconductors. World Scientific Publishing, Singapore (2004)

    Book  Google Scholar 

  40. Giuliani, G., Vignale, G.: Quantum Theory of the Electron Liquid. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  41. Taş, M., Tomak, M.: Short-range correlations in a one-dimensional electron gas. Phys. Rev. B 67, 235314 (2003)

    Article  Google Scholar 

  42. Devis, J.H.: The Physics of Low-dimensional Semiconductors. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  43. Lundstrom, M.: Fundamentals of Carrier Transport. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  44. Li, M., Wu, J.J., Han, X.X., Lu, Y.W., Liu, X.L., Zhu, Q.S., Wang, Z.G.: A model for scattering due to interface roughness in finite quantum wells. Semicond. Sci. Technol. 20, 207–1212 (2005)

    Google Scholar 

  45. Gantmakher, V.F., Levinson, Y.B.: Carrier Scattering in Metals and Semiconductors. Elsevier Science Publishers B.V., Amsterdam (1987)

    Google Scholar 

  46. Pirovano, A., Lacaita, A.L., Zandler, G., Oberhuber, R.: Explaining the dependences of the hole and electron mobilities in Si inversion layers. IEEE Trans. ED 47, 718–724 (2000)

    Article  Google Scholar 

  47. Goodnick, S.M., Ferry, D.K., Wilmsen, C.W., Liliental, Z., Fathy, D., Krivanek, O.L.: Surface roughness at the Si(100)–SiO\(_{2}\) interface. Phys. Rev. B 32, 8171 (1985)

    Google Scholar 

  48. Jin, S., Fischetti, M.V., Tang, T.-W.: Modeling of electron mobility in gated silicon nanowires at room temperature: surface roughness scattering, dielectric screening, and band non-parabolicity. J. Appl. Phys. 102, 083715 (2007)

    Google Scholar 

  49. Pala, M.G., Buran, C., Poli, S., Mouis, M.: Full quantum treatment of surface roughness effects in silicon nanowire and double gate FETs. J. Comput. Electron. 8, 374–381 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to thank to Dr. Umesh Bhaskar for valuable help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Kozlovskiy.

Appendices

Appendix 1

Expression (10) for kinetic tensor includes the spectral correliators of electron collision with external system of the scattering centers \(\langle \varphi ^{2}\rangle _{\omega , \vec {q}}^{(D)}\). Below we will consider scattering by longitudinal acoustic phonons, ionized impurities for bulk material (\(D = 3\)) and for low-dimensional nanostructures (\(D = 1, 2\)) we will take into consideration the surface roughness scattering. We will assume that in quantum film (\(D = 2\)) and quantum wire (\(D = 1\)) the electron motions are quantized accordingly in \(z\)-direction and in z-, y- directions. In the first case electrons move free in xy-plane and in the second along \(x\)-direction only.

1.1 Scattering by longitudinal acoustic phonons

1.1.1 Bulk material

For longitudinal acoustic phonons with dispersion law \(\omega = s_{L} q (s_{L}\) is the longitudinal sound velocity) the spectral correlator is [5, 8, 9]

$$\begin{aligned} \langle \varphi ^{2}\rangle _{Ac}^{(D=3)}{}_{\omega ,\vec {q}}^{(v)}&= \left( {\frac{\Xi _v}{e}}\right) ^{2}\frac{\pi \hbar \omega }{2\rho s_L^{2}}\coth \left( {\frac{\hbar \omega }{2k_B T}}\right) \left[ \delta (\omega -s_L q)\right. \nonumber \\&\left. +\,\,\delta (\omega +s_L q)\right] , \end{aligned}$$
(57)

\(\Xi _{v}\) is the acoustic deformation potential, \(\rho \) is the density of crystal, the \(\delta \)-function ensures the energy conservation at emission and absorption of phonons. For bulk material we take into account the angular dependence of the deformation potential [9, 18, 37] and expression for deformation potential could be represented as \(\Xi _{v}^{2} = \Xi _{d}^{2} Q^{(v)}_{xx(yy,zz)}\). The values \(Q^{(v)}_{xx(yy,zz)}\) for the different valleys are given in Table 1, where \(Q_{\parallel }(L)\) and \(Q_{\bot }(L)\) [9] are

$$\begin{aligned}&Q_\parallel (L)=1+\frac{\Xi _u }{\Xi _d }\frac{2L}{(L-1)^{2}}\left[ {L-4+\frac{3}{\sqrt{L-1}}\arctan (\sqrt{L-1})}\right] \nonumber \\&\quad +\,\frac{3}{2}\left( {\frac{\Xi _u }{\Xi _d }}\right) ^{2}\frac{L}{(L-1)^{3}} \left[ \frac{2L^{2}-14L-3}{3}+\frac{5L\arctan (\sqrt{L-1})}{\sqrt{L-1}}\right] .\nonumber \\ \end{aligned}$$
(58)
$$\begin{aligned}&Q_\bot (L)=1+\frac{\Xi _u }{\Xi _d }\frac{9}{4(L-1)^{2}}\left[ {\frac{2-5L}{3}+\frac{L^{2}\arctan (\sqrt{L-1})}{\sqrt{L-1}}}\right] \nonumber \\&\qquad \qquad \qquad +\,\,\frac{15}{32}\left( {\frac{\Xi _u }{\Xi _d}}\right) ^{2}\frac{1}{(L-1)^{3}}\left[ L^{2}+\frac{16 L}{3}-\frac{4}{3}\right. \nonumber \\&\qquad \qquad \qquad \left. +\,\,L^{2}(L-6)\frac{\arctan (\sqrt{L-1})}{\sqrt{L-1}}\right] . \end{aligned}$$
(59)

Here \(L = m_{\parallel }/m_{\bot }\).

As it is shown [58, 38] the spectral correlators in low-dimensional semiconductor structures could be obtained by integration

$$\begin{aligned}&\left\langle {\varphi ^{2}} \right\rangle ^{(D=2)}_{\omega , q_\bot } =\frac{1}{2\pi }\int \limits _{-\infty }^\infty {\left\langle {\varphi ^{2}} \right\rangle }_{\omega ,\vec {q}}^{(D=3)} dq_z , \quad q_{\bot }\in \{q_{x}, q_{y}\}, \end{aligned}$$
(60)
$$\begin{aligned}&\left\langle {\varphi ^{2}} \right\rangle ^{(D=1)}_{\omega , q_x} =\frac{1}{2\pi }\int \limits _{-\infty }^\infty {\left\langle {\varphi ^{2}}\right\rangle }_{\omega , q_\bot }^{(D=2)} dq_y. \end{aligned}$$
(61)

After integration we obtain correliators in quantum films and quantum wires in the following forms [58, 38]

$$\begin{aligned}&\langle \varphi _{Ac}^{2}\rangle ^{(D=2)}_{\omega ,q_\bot } =\left( {\frac{\Xi _A}{e}}\right) ^{2}\frac{\hbar \omega ^{2}}{2\rho s^{3}}\coth \left( {\frac{\hbar \left| \omega \right| }{2k_B T}}\right) \frac{\Phi \left( {\omega ^{2}-q_\bot ^{2}s^{2}}\right) }{\sqrt{\omega ^{2}-q_\bot ^{2}s^{2}}},\nonumber \\ \end{aligned}$$
(62)
$$\begin{aligned}&\langle \varphi _{Ac}^{2}\rangle ^{(D=1)}_{\omega ,q_x } =\left( {\frac{\Xi _A}{e}}\right) ^{2}\frac{\hbar \omega ^{2}}{4\rho s^{4}}\coth \left( {\frac{\hbar \left| \omega \right| }{2k_B T}}\right) \Phi \left( {\omega ^{2}-q_x^{2}s^{2}}\right) .\nonumber \\ \end{aligned}$$
(63)

\(\Phi (x)\) is the Heaviside step function.

In the low dimensional silicon structures we will use the averaged value of the acoustic deformation potential \(\Xi _{A}^{2}=\Xi _{d}^{2}+\Xi _{d} \Xi _{u}+3\Xi _{u}^{2}/8\) [9].

1.2 Scattering by ionized impurities

Coulomb potentials of the point unitary charged impurity in bulk material, quantum film and quantum wire could be written as [5, 7, 3941]

$$\begin{aligned}&\varphi ^{(D=3)}=\frac{4\pi e}{\varepsilon _L \left| {\vec {q}} \right| ^{2}}, \end{aligned}$$
(64)
$$\begin{aligned}&\varphi ^{(D=2)}=\frac{1}{2\pi }\int \limits _{-\infty }^\infty {\varphi ^{(D=3)}} dq_z =\frac{2\pi e}{\varepsilon _L q_\bot }, \quad q_{\bot } \in \{q_{x}, q_{y}\},\nonumber \\ \end{aligned}$$
(65)
$$\begin{aligned}&\varphi ^{(D=1)}=\frac{1}{2\pi }\int \limits _{-\infty }^\infty {\exp \left( {-\frac{q_y^{2}W_y^{2}}{2}}\right) \varphi ^{(D=2)}} dq_y, \end{aligned}$$
(66)

\(\varepsilon _{L}\) is the dielectric constant of the lattice. In (67) we have to introduce the regularization factor exp (\(-q_{y}^{2}W_{y}^{2}/2\))(see, more [5, 7, 10, 39, 40]). In this case a quantum wire with a finite but small extension \(W_{y}\) in the quantum-confined \(y\)-direction is considered. After integration (67) we have

$$\begin{aligned} \varphi ^{(D=1)}=\frac{e}{\varepsilon _L }\exp \left( {\frac{q_x^{2}W_y^{2}}{4}}\right) K_0 \left( {\frac{q_x^{2}W_y^{2}}{4}}\right) , \end{aligned}$$
(67)

\(K_{0}\) is the zeroth-order modified Bessel function. At small transferred momentum \(q_{x}^{2}W_{y}^{2}/4\le 1\) expression (68) could be simplified [5, 39]

$$\begin{aligned} \varphi ^{(D=1)}=2\frac{e}{\varepsilon _L }\ln \left( {\frac{q_1 \sqrt{8}}{\left| {q_x}\right| }}\right) . \end{aligned}$$
(68)

Correlators of scattering potentials we obtain by averaging over positions of the scattering centers and performing Fourier transform in time [5, 7, 9]. For bulk material we take into account contribution of electrons \(\Delta \varepsilon ^{(0)}(\omega = 0, q) = \varepsilon _{L} q_{0}^{2}/q^{2}\) in the screening process [5, 8, 9, 38]

$$\begin{aligned} \langle \varphi ^{2}\rangle ^{(D=3)}_{\omega ,\vec {q}} =\frac{2^{5}\pi ^{3}N_I^{(D=3)} e^{2}}{\left[ \varepsilon _L +\Delta \varepsilon ^{(0)}(\omega =0,q)\right] ^{2}q^{4}}\delta \left( \omega \right) , \end{aligned}$$
(69)

where \(\Delta \varepsilon ^{(0)}(0,q)=\varepsilon _L \frac{q_0^2}{q^{2}}, q_0^2 =\frac{12e^{2}m_\bot }{\hbar ^{3}\varepsilon _L} \left[ {\frac{2m_{||} k_B T }{\pi }}\right] ^{1 / 2}\) \(F_{- 1/2} (\eta _v \left( {\hat{{e}}}\right) )\).

In contrast to bulk material there is no exponential screening in low-dimensional semiconductor structures and we will neglect by it (see, more [5, 6, 39, 41, 42]).

$$\begin{aligned}&\left\langle \varphi ^{2}\right\rangle _{\omega ,q_\bot }^{^{(D=2)}} =\frac{\left( {2\pi }\right) ^{3}e^{2}N_I^{(D=2)}}{\varepsilon _L^{2}q_\bot ^{2}}\delta \left( \omega \right) , \end{aligned}$$
(70)
$$\begin{aligned}&\left\langle {\varphi ^{2}} \right\rangle _{\omega .q_x }^{(D=1)} =\frac{8\pi ^{3}e^{2}N_I^{(D=1)}}{\varepsilon _L^{2}}\left[ {\ln \left( {\frac{\sqrt{8}}{W_y \left| {q_x } \right| }}\right) }\right] ^{2}\delta \left( \omega \right) . \end{aligned}$$
(71)

\(N_{I}^{(D=2)}\) and \(N_{I}^{(D=1)}\) are accordingly the areal and linear densities of scattering centers. For comparison with experiment in which nanostructures with different thickness but fixed bulk concentration of ionized impurities are investigated (see, for instance [2]) we will assume \(N_{I}^{(D=3)} = N_{I}^{(D=2)}/W_{z}=N_{I}^{(D=1)}/W_{z}W_{y}\).

1.3 Surface roughness scattering

1.3.1 Quantum film

The interface roughness scattering potential \(\varphi \left( {\vec {r}_\bot }\right) ^{(v)}\) is given by a fluctuation of the quantized energy of electrons in the valley \(v\) with width fluctuation \(\Delta ({\vec {r}})\) of the quantum film thickness [10, 13, 43]

$$\begin{aligned} \varphi \left( {\vec {r}_\bot }\right) ^{(v)}=\frac{1}{e}\left| {\frac{\partial \varepsilon _{\vec {k}}^{(v)}}{\partial W_z }} \right| \Delta _f \left( {\vec {r}_\bot }\right) . \end{aligned}$$
(72)

The surface roughness is assumed to be characterized by the lateral size \(\Lambda _{f}\) and height \(\Delta _{f}\) of Gaussian fluctuations of the thickness [10, 13, 43, 44]. In this case the space-time correlator is

$$\begin{aligned} K_f ({\vec {r}_\bot , t})=\left\langle {\Delta _f \left( {\vec {r}_\bot }\right) \Delta _f \left( {{\vec {r}}'_\bot }\right) } \right\rangle =\Delta ^{2}\exp \left( {-\frac{\vec {r}_\bot ^{2}}{\Lambda _f^{2}}}\right) . \end{aligned}$$
(73)

The spectral correlator of the scattering potential could be obtained by Fourier transform [45]

$$\begin{aligned}&\left( {\left\langle {\varphi ^{2}} \right\rangle _{\omega , \vec {q}_\bot }^{(v)}}\right) _{SR}^{(D=2)} =\left[ {\frac{1}{e}\frac{\partial \varepsilon _{\vec {k}}^{(v)}}{\partial W_z }}\right] ^{2}\int \limits _{-\infty }^\infty {\exp \left( {-i\omega t}\right) dt}\nonumber \\&\quad \times \int \limits _{-\infty }^\infty {K_f \left( {\vec {r}_\bot ,t}\right) \exp \left( iq_\bot \vec {r}_\bot \right) } d^{2}\vec {r}_\bot . \end{aligned}$$
(74)

Finally we have

$$\begin{aligned} \left\langle {\varphi ^{2}} \right\rangle _{\omega ,\vec {q}_\bot }^{(v)}=2\pi ^{2}\left[ {\frac{\partial \varepsilon _{\vec {k}}^{(v)}}{e\partial W_z}}\right] ^{2}\Delta _f^{2}\Lambda _f^{2}\exp \left( {-\frac{q_\bot ^2 \Lambda _f^{2}}{4}}\right) \delta \left( \omega \right) .\nonumber \\ \end{aligned}$$
(75)

1.3.2 Quantum wire

The space-time correlator for quantum wire is [4549]

$$\begin{aligned} K_w ({r_x ,t})=\left\langle {\Delta _w (r_x)\Delta _w \left( {r_x^{\prime }-r_x }\right) } \right\rangle =\Delta _{w}^2 \exp \left( {-\frac{\sqrt{2}\left| {r_x } \right| }{\Lambda _w}}\right) ,\nonumber \\ \end{aligned}$$
(76)

\(\Delta _{w}\) is the root-mean square fluctuation of the roughness, \(\Lambda _{w}\) is the correlation length.

Performing the Fourier transforms with respect to time and \(r_{x}\) we obtain

$$\begin{aligned}&\left( {\left\langle {\varphi ^{2}} \right\rangle _{\omega , \vec {q}_\bot }^{(v)}}\right) _{SR}^{(D=1)} =\left[ {\left( {\frac{\partial \varepsilon _{\vec {k}}^{(v)}}{e\partial W_z }}\right) ^{2}+\left( {\frac{\partial \varepsilon _{\vec {k}}^{(v)}}{e\partial W_y}}\right) ^{2}}\right] \nonumber \\&\quad \times \,\,\frac{4\sqrt{2}\pi \Delta _w^2 \Lambda _w}{\left( {2+q_x^{2}\Lambda _w^{2}}\right) }\delta (\omega ). \end{aligned}$$
(77)

As it follows from dispersion relations (15)–(17)

$$\begin{aligned} \left[ {\frac{1}{e}\frac{\partial \varepsilon _{\vec {k}}^{(v)}}{\partial W_{z(y)}}}\right] ^{2}=\left( {\frac{\left( {\hbar \pi l_{z(y)} }\right) ^{2}}{em_{zz(yy)}^{(v)}W_{z(y)}^{3}}}\right) ^{2}. \end{aligned}$$
(78)

In calculations we will assume \(\Delta _{f} = 1.03\,\mathrm{nm}, \Lambda _{f} = 0.27\) nm [45] and \(\Delta _{w} = 0.48\,\mathrm{nm},\; \Lambda _{w} = 1.3\,\mathrm{nm}\) [49].

Appendix 2

In this section we evaluate integral \(I_{v}(q)^{(D)}\) for electron gas with different dimensionality \(D \in 1, 2, 3\)

$$\begin{aligned} I_v (q)^{(D)}=\int {\delta \left( {\varepsilon _{\vec {k}}^{(v)}-\varepsilon _{\vec {k}-\vec {q}}^{(v)}-\hbar \omega }\right) \frac{\partial f_{\vec {k}}^0 }{\partial \varepsilon _{\vec {k}} }^{(v)}d^{D}\vec {k}}. \end{aligned}$$
(79)

Substituting the relevant dispersion relations from (15)–(17) into integral (80) we derive

$$\begin{aligned}&I_v \left( {q_x ,q_y ,q_z ,\hat{{e}}}\right) ^{(D=3)}\nonumber \\&\quad =-\frac{2\pi \sqrt{m_{xx}^{(v)} m_{yy}^{(v)} m_{zz}^{(v)}}}{\hbar ^{4}}\left( {\frac{q_x^2 }{m_{xx}^{(v)} }+\frac{q_y^2 }{m_{yy}^{(v)}}+\frac{q_z^2 }{m_{zz}^{(v)} }}\right) ^{-1/2}\nonumber \\&\qquad \times \left\{ 1+\exp \left[ \frac{\hbar ^{2}}{8k_B T}\left( {\frac{q_x^2 }{m_{xx}^{(v)} }+\frac{q_y^2 }{m_{yy}^{(v)} }+\frac{q_z^2 }{m_{zz}^{(v)} }}\right) \right. \right. \nonumber \\&\qquad \quad \left. \left. -\,\eta _v \left( {\hat{{e}}}\right) ^{(D=3)}\right] \right\} ^{-1}. \end{aligned}$$
(80)
$$\begin{aligned}&I_v \left( {q_x ,q_y ,\hat{{e}}}\right) ^{(D=2)}\nonumber \\&\quad =-\sqrt{\frac{2}{\pi }}\frac{m_{xx}^{(v)}m_{yy}^{(v)}}{\hbar ^{3}\sqrt{m_{yy}^{(v)} q_x^{2}+m_{xx}^{(v)}q_y^{2}}\sqrt{k_B T}} F_{-3/2} \left( {\eta _v^{(D=2)}\left( {\hat{{e}},l_z }\right) }\right) \nonumber \\ \end{aligned}$$
(81)
$$\begin{aligned}&I_v \left( {q_x ,\hat{{e}},l_z ,l_y}\right) ^{(D=1)}\nonumber \\&\quad =-\frac{m_{xx}^{(v)}}{\left| {q_x } \right| \hbar ^{2}k_B T}\exp \left( {\frac{q_x^{2}\hbar ^{2}}{8m_{xx}^{(v)}k_B T}-\eta _v^{(D=1)}\left( {\hat{{e}},l_z ,l_y }\right) }\right) \nonumber \\&\qquad \times \left[ {\exp \left( {\frac{q_x^{2}\hbar ^{2}}{8m_{xx}^{(v)}k_B T}-\eta _v^{(D=1)}\left( {\hat{{e}},l_z ,l_y }\right) }\right) +1}\right] ^{-2}. \end{aligned}$$
(82)

Here \(\eta _v \left( {\hat{{e}}}\right) ^{(D=3)}=\frac{\varepsilon _F -\Delta \varepsilon _v \left( {\hat{{e}}}\right) }{k_B T}\), \(\eta _v^{(D=2)}\left( {\hat{{e}},l_z }\right) =\frac{\varepsilon _F -\Delta \varepsilon _v \left( {\hat{{e}}}\right) }{k_B T}\) \(-\frac{\hbar ^{2}}{2m_{zz}^{(v)}k_B T}\left( {\frac{\pi l_z }{W_z }}\right) ^{2}, \eta _v^{(D=1)}\left( {\hat{{e}},l_z ,l_y }\right) =\frac{\varepsilon _F -\Delta \varepsilon _v \left( {\hat{{e}}}\right) }{k_B T}-\frac{\hbar ^{2}}{2k_B Tm_{yy}^{(v)}}\) \(\left( {\frac{\pi l_y }{W_y }}\right) ^{2}-\frac{\hbar ^{2}}{2k_B Tm_{zz}^{(v)}}\left( {\frac{\pi l_z}{W_z}}\right) ^{2}\) and \(l_{z}, l_{y} = 1, 2, \ldots \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozlovskiy, S.I., Sharan, N.N. Piezoresistance effect in n-type silicon: from bulk to nanowires. J Comput Electron 13, 515–528 (2014). https://doi.org/10.1007/s10825-014-0563-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-014-0563-2

Keywords

Navigation