Skip to main content
Log in

Barrier penetration and screening effects on hole mobility and thermopower in a Si/Si1-xGex/Si finite square quantum well

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the mobility \(\mu \) and thermopower S of a quasi-two-dimensional hole gas (Q2DHG) confined in a Si/Si1-xGex/Si finite square quantum well (QW) due to different scattering mechanisms such as alloy disorder (AD), surface roughness (SR), misfit deformation potential (DP), piezoelectric charge (PE), remote impurity (RI), acoustic phonon (ac) via deformation potential (acDP) and piezoelectric fields (acPE). We use the screened theory in the calculation of the mobility due to all considered scattering mechanisms and investigate the dependence of screening effects on QW height. We show that the infinite model underestimates the surface roughness-, acoustic phonon-limited and total mobility of narrow QWs especially at high temperatures T. We find that, for system parameters considered, Sd (Sg) decreases slightly (increases notably) with increasing barrier height, and at low hole densities the overall thermopower is determined mainly by Sd and its dependence on barrier height is very weak. Our results also indicate that, in the case of narrow QWs, the infinite model overestimates the total thermopower and the screening reduces remarkably both Sg and Sd particularly in the range of high T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D N Quang and N H Tung Phys. Rev. B 75 073305 (2007)

    Article  ADS  Google Scholar 

  2. T D Huan and N P Hai Phys. Stat. Sol. (b) 244 2100 (2007)

    Article  ADS  Google Scholar 

  3. M A Sadeghzadeh, A I Horrell, O A Mironov and E H C Parker Appl. Phys. Lett. 76 2568 (2000)

    Article  ADS  Google Scholar 

  4. R G Vaidya, N S Sankeshwar and B G Mulimani AIP Adv. 4 017107 (2014)

    Article  ADS  Google Scholar 

  5. A Gold Z Phys. B – Condens. Matter 74 53 (1989)

    Article  ADS  Google Scholar 

  6. M Z Elias Phys. E 108 96 (2019)

    Article  Google Scholar 

  7. F Sonmez, E Arslan and S Ardali J. Alloys Compd. 864 158895 (2021)

    Article  Google Scholar 

  8. X Wang and A Dodabalapur J. Appl. Phys. 130 145302 (2021)

    Article  ADS  Google Scholar 

  9. A N Banerjee and S W Joo Ceram. Int. 44 5950 (2018)

    Article  Google Scholar 

  10. M J Smith and P N Butcher J. Phys.: Condens. Matter 1 1261 (1989)

    ADS  Google Scholar 

  11. T Van Tuan Eur. Phys. J. B 94 103 (2021)

    Article  ADS  Google Scholar 

  12. S S Kubakaddi and K R Usharani Physica E 25 497 (2005)

    Article  ADS  Google Scholar 

  13. V Van Tai and N Q Khanh Phys. E 67 84 (2015)

    Article  Google Scholar 

  14. N Q H KhanhTotsuji Phys. Rev. B 69 165110 (2004)

    Article  ADS  Google Scholar 

  15. D N Quang Phys. Rev. B 68 195316 (2003)

    Article  ADS  Google Scholar 

  16. N Q Khanh Physica E 43 1712 (2011)

    Article  ADS  Google Scholar 

  17. Nguyen Quoc Khanh and Vo Van Tai Superlatt Microstruct. 100 792 (2016)

    Article  Google Scholar 

  18. T Kawamura and S Das Phys. Rev. B 45 3612 (1992)

    Article  ADS  Google Scholar 

  19. D G Cantrell and P N Butcher J. Phys. C: Solid State Phys. 20 1985 (1987)

    Article  ADS  Google Scholar 

  20. S S Kubakaddi, V S Katti and D Lehmann J. Appl. Phys. 107 123716 (2010)

    Article  ADS  Google Scholar 

  21. S Tsujino et al Appl. Phys. Lett. 84 2829 (2004)

    Article  ADS  Google Scholar 

  22. K Van Nguyen and Y C Chang Phys. Rev. B 103 045425 (2021)

    Article  ADS  Google Scholar 

  23. G Bastard Wave Mechanics Applied to Semiconductor Heterostructures (Les ´Editions de Physique, Paris) (1990)

  24. K Suresha, S S Kubakaddi and B G Mulimani Physica E 21 143 (2004)

    Article  ADS  Google Scholar 

  25. E A G C F De AndradaeSilvaLaRoccaBassani Phys. Rev. B 55 16293 (1997)

    Article  ADS  Google Scholar 

  26. S Haldar, V K Dixit, G Vashisht, S K Khamari et al Sci. Rep. 7 4905 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

TVT: Analytical calculations, Software, Visualization, Manuscript draft preparation. VVT: Analytical calculations, Software. NQK: Supervision, Validation, Manuscript writing and reviewing. DKL: Manuscript improvement.

Corresponding author

Correspondence to Dang Khanh Linh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Tuan, T., Khanh, N.Q., Van Tai, V. et al. Barrier penetration and screening effects on hole mobility and thermopower in a Si/Si1-xGex/Si finite square quantum well. Indian J Phys 97, 2961–2969 (2023). https://doi.org/10.1007/s12648-023-02662-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02662-7

Keywords

Navigation