Skip to main content
Log in

Cryptanalysis and Improvement of Semi-Quantum Dialogue with Bell Entangled States

  • RESEARCH
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Recently, Pan proposed a semi-quantum dialogue scheme with Bell entangled states Pan (Int. J. Theor. Phys. 59, 1364-1371, 2020). Here we re-examin the security of it and discover a security vulnerability in the original scheme. Eavesdropper Eve may utilize double controlled-not operation attack to obtain Bob’s secret without being detected. Finally, we give an improvement of the semi-quantum dialogue protocol and prove its security. We sincerely hope the researchers pay enough attention to double controlled-not operation attack hidden in semi-quantum cryptography protocols and design truly secure semi-quantum protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The authors declare that the data supporting the findings of this study are available within the paper.

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE Press, Bangalore (1984)

    Google Scholar 

  2. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without bell theorem. Phys. Rev. Lett. 68, 557–559 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Ekert, A.K.: Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)

    Article  ADS  Google Scholar 

  5. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  6. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the EinsteinPodolsky-rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  7. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  8. Qi, Z.T., Li, Y.H., Huang, Y.W., Fen, J., Zheng, Y.L., Chen, X.F.: A 15-user quantum secure direct communication network. Light Sci. Appl. 10, 183 (2021)

    Article  ADS  Google Scholar 

  9. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)

    Article  ADS  Google Scholar 

  11. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys A: Math Theor 42, 055305 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Ye, T.Y.: Multi-party quantum private comparison protocol based on entanglement swapping of bell entangled states. Commun. Theor. Phys. 66, 280–290 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical bob. Phys. Rev. Lett. 99(14), 140501 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Phys. Rev. A. 79(3), 032341 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Zou, X., Qiu, D., Zhang, S., Mateus, P.: Semiquantum key distribution without invoking the classical party’s measurement capability. Quantum Inf. Process. 14(8), 2981–2996 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. He, J., Li, Q., Wu, C., Chan, W., Zhang, S.: Measurement-device-independent semiquantum key distribution. Int. J. Quan. Inf. 16(2), 1850012 (2018)

    Article  MATH  Google Scholar 

  17. Krawec, W.O.: Security of a semi-quantum protocol where reflections contribute to the secret key. Quantum Inf. Process. 15(5), 2067–2090 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Krawec, W.O.: Security proof of a semi-quantum key distribution protocol. In: Proceedings of 2015 IEEE International Symposium on Information Theory (ISIT2015), pp. 686-690. Hongkong, arXiv: 1412.0282 (2015)

  19. Zou, X.F., Qiu, D.W.: Three-step semi-quantum secure direct communication protocol. Sci. China Phys. Mech. Astron. 57(9), 1696–1702 (2014)

    Article  ADS  Google Scholar 

  20. Gu, J., Lin, P.H., Wang, T.H.: Double C-NOT attack and counterattack on Three-step semi-quantum secure direct communication protocol. Quantum. Inf. Process. 17(7), 182 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Xie, C., Li, L., Situ, H.Z., He, H.: Semi-quantum secure direct communication scheme based on Bell sttes. Int. J. Theor. Phys. 57, 1881–1887 (2018)

    Article  MATH  Google Scholar 

  22. Zhang, M.H., Li, H.F., Xia, Z.Q., Feng, X.Y., Peng, J.Y.: Semi-quantum secure direct communication using EPR pairs. Quantum. Inf. Process. 16(5), 117 (2017)

    Article  ADS  MATH  Google Scholar 

  23. Li, Q., Chan, W.H., Long, D.Y.: Semi-quantum secret sharing using entangled states. Phys. Rev. A 82(2), 022303 (2010)

    Article  ADS  Google Scholar 

  24. Tsai, C.W., Yang, C.W., Lee, N.Y.: Semi-quantum secret sharing protocol using W-state. Mod. Phys. Lett. A 34(27), 1950213 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Chou, W. H., Hwang, T., Gu, J.: Semi-quantum private comparison protocol under an almost-dishonest third party. preprint arXiv:1607.07961[quant-ph] (2016)

  26. Lin, P.H., Hwang, T., Tsai, C.W.: Efficient semi-quantum private comparison using single photons. Quantum Inf. Process. 18(7), 207 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Lin, P.H., Hwang, T., Tsai, C.W.: Double CNOT attack on "Quantum key distribution with limited classical Bob". Int. J. Quan. Inf. 17(2), 1975001 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yang, C.W.: Efficient and secure semi-quantum secure direct communication protocol against double CNOT attack. Quantum Inf. Process. 19(2), 50 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Tsai, C.W., Chang, Y.C., Lai, Y.H., Yang, C.W.: Cryptanalysis of limited resource semi-quantum secret sharing. Quantum Inf. Process. 19(8), 224 (2020)

    Article  ADS  Google Scholar 

  30. Tsai, C.W., Lin, J.S., Yang, C.W.: Cryptanalysis and improvement in semi-quantum private comparison based on Bell states. Quantum Inf. Process. 20(3), 120 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Yang, C.W., Wang, H.W., Lin, J.S., Tsai, C.W.: Semi-Quantum identification without information leakage. Mathematics. 11(2), 452 (2023)

    Google Scholar 

  32. Pan, H.M.: Semi-quantum dialogue with bell entangled states. Int. J. Theor. Phys. 59, 1364–1371 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Deng, F.G., Li, X.H., Li, C.Y.: Quantum secure direct communication network with einstein podolsky rosen pairs. Phys. Lett. A 359, 5 (2006)

    Article  MATH  Google Scholar 

  34. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1–2), 23–25 (2006)

    Article  ADS  MATH  Google Scholar 

  35. Tan, Y.G., Lu, H., Cai, Q.Y.: Comment on “Quantum key distribution with classical Bob. Phys Rev Lett. 102, 098901 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  36. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74(5), 054302 (2006)

    Article  ADS  Google Scholar 

  37. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)

    Article  ADS  Google Scholar 

  38. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication. Sci China Ser G-Phys Mech Astron. 51(5), 559–566 (2008)

    Article  ADS  Google Scholar 

  39. Tan, Y.G., Cai, Q.Y.: Classical correlation in quantum dialogue. Int J Quant Inform. 6(2), 325–329 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Fang Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, GF. Cryptanalysis and Improvement of Semi-Quantum Dialogue with Bell Entangled States. Int J Theor Phys 62, 224 (2023). https://doi.org/10.1007/s10773-023-05482-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05482-x

Keywords

PACS

Navigation