Skip to main content
Log in

Semi-quantum Key Agreement Protocol Using W States

  • RESEARCH
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In response to the emerging security challenges brought about by advances in quantum technology, traditional key agreement methods are encountering vulnerabilities. To address this issue, We propose a semi-quantum key agreement (SQKA) protocol that utilizes four different forms of the W state, a particle state with strong interparticle entanglement. Classical parties are pre-specified to perform distinct operations on various forms of W states, but these operations are completely random to other parties or potential attackers. Based on the sequence of measurement results transmitted by the quantum square and the pre-defined coding rules, the classical party can infer the operation performed by the other party to achieve identity authentication, and then publish the private key to generate the final key. The analysis of the protocol shows that it can effectively resist common inside and outside attacks, and has the advantage of being more efficient. In summary, by adopting SQKA protocol, we achieve a secure, fair and efficient key negotiation process, providing a feasible solution for cooperation between quantum and classical parties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in the article.

References

  1. Iqbal, H., Krawec, W.O.: Semi-quantum cryptography. Quantum Inf. Process 19, 97 (2020). https://doi.org/10.1007/s11128-020-2595-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf. Process. 16, 1–19 (2017). https://doi.org/10.1007/s11128-017-1736-2

    Article  MathSciNet  MATH  Google Scholar 

  3. Zhou, N.R., Zhu, K.N., Wang, Y.Q.: Three-party semi-quantum key agreement protocol. Int. J. Theor. Phys. 59, 663–676 (2020). https://doi.org/10.1007/s10773-019-04288-0

    Article  MathSciNet  MATH  Google Scholar 

  4. Lu, D.J., Li, Z.H., Yan, C.H., Liu, L.: verifiable multi-party quantum key agreement with cluster state. Ruan Jian Xue Bao/J. Softw. 33, 4804–4815 (2022). https://doi.org/10.13328/j.cnki.jos.006379

    Article  Google Scholar 

  5. Liu, W.J., Chen, Z.Y., Ji, S., Wang, H.B., Zhang, J.: Multi-party semi-quantum key agreement with delegating quantum computation. Int. J. Theor. Phys. 56, 3164–3174 (2017). https://doi.org/10.1007/s10773-017-3484-6

    Article  MathSciNet  MATH  Google Scholar 

  6. Gu, J., Cao, X.Y., Fu, Y., He, Z.W., Yin, Z.J., Yin, H.L., Chen, Z.B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Sci. Bull. (Beijing). 67, 2167–2175 (2022). https://doi.org/10.1016/j.scib.2022.10.010

    Article  ADS  Google Scholar 

  7. Xie, Y.M., Lu, Y.S., Weng, C.X., Cao, X.Y., Jia, Z.Y., Bao, Y., Wang, Y., Fu, Y., Yin, H.L., Chen, Z.B.: Breaking the rate-loss bound of quantum key distribution with asynchronous two-photon interference. PRX Quantum. 3, 020315 (2022). https://doi.org/10.1103/PRXQuantum.3.020315

  8. Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., Zhou, F., Jiang, H.-F., Chen, T.-Y., Li, H., You, L.-X., Wang, Z., Wang, X.-B., Zhang, Q., Pan, J.-W.: Twin-field quantum key distribution over 511 km optical fiber linking two distant metropolitans areas. Nat. Photon. 15, 570–575 (2021). https://doi.org/10.1038/s41566-021-00828-5

  9. Zhou, L., Lin, J., Jing, Y., Yuan, Z.: Twin-field quantum key distribution without optical frequency dissemination. Nat. Commun. 14, 928 (2023). https://doi.org/10.1038/s41467-023-36573-2

    Article  ADS  Google Scholar 

  10. Yin, H.-L., Fu, Y., Li, C.-L., Weng, C.-X., Li, B.-H., Gu, J., Lu, Y.-S., Huang, S., Chen, Z.-B.: Experimental quantum secure network with digital signatures and encryption. Natl. Sci. Rev. (2022). https://doi.org/10.1093/nsr/nwac228

    Article  Google Scholar 

  11. Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., Zhu, Y.-G., Morozov, P.V., Divochiy, A.V., Zhou, Z., Guo, G.-C., Han, Z.-F.: Twin-field quantum key distribution over 830-km fibre. Nat. Photonics 16, 154–161 (2022). https://doi.org/10.1038/s41566-021-00928-2

    Article  ADS  Google Scholar 

  12. He, Y., Di, M., Pang, Y., Yue, Y., Li, G., Liu, J.: Two-party mutual authentication quantum key agreement protocol based on bell states. Dianzi Keji Daxue Xuebao/J. Univ. Electron. Science and Technology of China. 51, 488–492 (2022). https://doi.org/10.12178/1001-0548.2022008

    Article  Google Scholar 

  13. Yang, Y.G., Li, B.R., Li, D., Zhou, Y.H., Shi, W.M.: New quantum key agreement protocols based on Bell states. Quantum Inf. Process. 18, 322 (2019). https://doi.org/10.1007/s11128-019-2434-z

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Gao, H., Zhou, R.G.: Multi-party quantum key agreement protocol based on G-like states and χ+ states. Int. J. Theor. Phys. 61, 16 (2022). https://doi.org/10.1007/s10773-022-05011-2

    Article  MathSciNet  MATH  Google Scholar 

  15. Liang, J.W., Cheng, Z., Shi, J.J., Guo, Y.: Quantum secret sharing with quantum graph states. Acta. Physica. Sinica. 65(16) (2016). https://doi.org/10.7498/aps.65.160301

  16. Fu, Y., Yin, H.-L., Chen, T.-Y., Chen, Z.-B.: Long-distance measurement-device-independent multiparty quantum communication. Phys. Rev. Lett. 114, 90501 (2015). https://doi.org/10.1103/PhysRevLett.114.090501

    Article  ADS  Google Scholar 

  17. Bai, J.-L., Xie, Y.-M., Li, Z., Yin, H.-L., Chen, Z.-B.: Post-matching quantum conference key agreement. Opt. Express 30, 28865 (2022). https://doi.org/10.1364/oe.460725

    Article  ADS  Google Scholar 

  18. Chen, Y., Ye, T.Y.: Semiquantum secret sharing by using χ-type states. Eur. Phys. J. Plus 137, 1331 (2022). https://doi.org/10.1140/epjp/s13360-022-03521-w

    Article  Google Scholar 

  19. Tsai, C.W., Yang, C.W., Lee, N.Y.: Semi-quantum secret sharing protocol using W-state. Mod. Phys. Lett. A. 34(27), 1950213 (2019). https://doi.org/10.1142/S0217732319502134

  20. Zhang, Z.J.: Multiparty quantum secret sharing of secure direct communication. Phys. Lett. A: Gen. At. Solid State Phys 342, 60–66 (2005). https://doi.org/10.1016/j.physleta.2005.05.049

    Article  MATH  Google Scholar 

  21. Bell, B.A., Markham, D., Herrera-Martí, D.A., Marin, A., Wadsworth, W.J., Rarity, J.G., Tame, M.S.: Experimental demonstration of graph-state quantum secret sharing. Nat. Commun. 5, 5480 (2014). https://doi.org/10.1038/ncomms6480

    Article  ADS  Google Scholar 

  22. Bai, C.M., Zhang, S., Liu, L.: Quantum secret sharing for a class of special hypergraph access structures. Quantum Inf. Process. 21, 119 (2022). https://doi.org/10.1007/s11128-022-03425-9

  23. Yin-Ju, L.: A novel practical quantum secure direct communication protocol. Int. J. Theor. Phys. 60, 1159–1163 (2021). https://doi.org/10.1007/s10773-021-04741-z

    Article  MathSciNet  MATH  Google Scholar 

  24. Murta, G., Grasselli, F., Kampermann, H., Bruß, D.: Quantum conference key agreement: a review. Adv. Quantum Technol. 3, 2000025 (2020). https://doi.org/10.1002/qute.202000025

    Article  Google Scholar 

  25. Portmann, C., Renner, R.: Security in quantum cryptography. Rev. Mod. Phys. 94(2), 025008 (2022). https://doi.org/10.1103/RevModPhys.94.025008

  26. Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptol. 13, 143–202 (2000). https://doi.org/10.1007/s001459910006

    Article  MathSciNet  MATH  Google Scholar 

  27. Rao, V.N., Banerjee, A., Srikanth, R.: Quantum counterfactuality with identical particles. Commun. Theor. Phys. 75, 065102 (2023). https://doi.org/10.1088/1572-9494/acb9fd

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Xu, T.J., Chen, Y., Geng, M.J., et al.: Single-state multi-party semiquantum key agreement protocol based on multi-particle GHZ entangled states. Quantum Inf. Process. 21, 266 (2022). https://doi.org/10.1007/s11128-022-03615-5

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Zhou, N.R., Liao, Q., Zou, X.F.: Multi-party semi-quantum key agreement protocol based on the four-qubit cluster states. Int. J. Theor. Phys. 61, 114 (2022). https://doi.org/10.1007/s10773-022-05102-0

    Article  MathSciNet  MATH  Google Scholar 

  30. Bala, R., Asthana, S., Ravishankar, V.: Quantum and semi-quantum key distribution in networks. Int. J. Theor. Phys. 62, 104 (2023). https://doi.org/10.1007/s10773-023-05351-7

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, M.H., Hao, S.H., Qin, Z.Z., Su, X.L.: Research advances in continuous-variable quantum computation and quantum error correction. Acta Phys. Sin. 71(16), 160305 (2022). https://doi.org/10.7498/aps.71.20220635

  32. Wang, F.-X., Wang, W., Niu, R., Wang, X., Zou, C.-L., Dong, C.-H., Little, B.E., Chu, S.T., Liu, H., Hao, P., Liu, S., Wang, S., Yin, Z.-Q., He, D.-Y., Zhang, W., Zhao, W., Han, Z.-F., Guo, G.-C., Chen, W.: Quantum key distribution with on‐chip dissipative kerr soliton. Laser Photonics Rev. 14(2) (2020). https://doi.org/10.1002/lpor.201900190

  33. Navas-Merlo, C., Garcia-Escartin, J.C.: Detector blinding attacks on counterfactual quantum key distribution. Quantum Inf. Process. 20, 196 (2021). https://doi.org/10.1007/s11128-021-03134-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Carrara, G., Murta, G., Grasselli, F.: Overcoming fundamental bounds on quantum conference key agreement. Phys. Rev. Appl. 19, 64017 (2023). https://doi.org/10.1103/PhysRevApplied.19.064017

    Article  Google Scholar 

  35. Ye, C.-Q., Li, J., Chen, X.-B., Hou, Y., Dong, M., Ota, K.: Circular mediated semi-quantum key distribution. Quantum Inf. Process. 22, 170 (2023). https://doi.org/10.1007/s11128-023-03915-4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Guskind, J., Krawec, W.O.: Mediated semi-quantum key distribution with improved efficiency[J]. Quantum Sci. Technol. 7(3), 035019 (2022)

    Article  ADS  Google Scholar 

  37. Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semi-quantum key distribution. Phys. Rev. A. (2008). https://doi.org/10.1103/PhysRevA.79.032341

    Article  MATH  Google Scholar 

  38. Wu, W.Q., Sun, C.Y.: Semi-quantum key distribution with two classical users. Front Phys. 10, 1029262 (2022). https://doi.org/10.3389/fphy.2022.1029262

    Article  Google Scholar 

  39. Maitra, A., Paul, G.: Eavesdropping in semiquantum key distribution protocol.  Inf. Process. Lett. 113(12) (2013). https://doi.org/10.1016/j.ipl.2013.03.008

  40. Krawec, W.O., Liss, R., Mor, T.: Security proof against collective attacks for an experimentally feasible semiquantum key distribution protocol. IEEE Trans. Quantum Eng. 4, 1–16 (2023). https://doi.org/10.1109/TQE.2023.3261262

    Article  Google Scholar 

  41. Chen, H.-C., Damarjati, C., Prasetyo, E., Chou, C.-L., Kung, T.-L., Weng, C.-E.: Generating multi-issued session key by using semi quantum key distribution with time-constraint. IEEE Access. 10, 20839–20851 (2022). https://doi.org/10.1109/ACCESS.2022.3151890

    Article  Google Scholar 

  42. Iqbal, H., Krawec, W.O.: High-dimensional semiquantum cryptography. IEEE Trans. Quantum Eng. 1, 1–17 (2020). https://doi.org/10.1109/TQE.2020.3018133

    Article  Google Scholar 

  43. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. In: 2007 First International Conference on Quantum, Nano, and Micro Technologies (ICQNM’07). p. 10. IEEE (2007)

  44. Liu, C., Cheng, S., Li, H.H., Gong, L.H., Chen, H.Y.: New semi-quantum key agreement protocol based on the χ-Type entanglement states. Int. J. Theor. Phys. 61, 60 (2022). https://doi.org/10.1007/s10773-022-05064-3

    Article  MathSciNet  MATH  Google Scholar 

  45. Lipinska, V., Murta, G., Wehner, S.: Anonymous transmission in a noisy quantum network using the W state. Phys. Rev. A. 98(5) (2018). https://doi.org/10.1103/PhysRevA.98.052320

  46. Pirandola, S., Andersen, U.L., Banchi, L., Berta, M., Bunandar, D., Colbeck, R., Englund, D., Gehring, T., Lupo, C., Ottaviani, C., Pereira, J., Razavi, M., Shaari, J.S., Tomamichel, M., Usenko, V.C., Vallone, G., Villoresi, P., Wallden, P.: Advances in quantum cryptography. Adv. Opt. Photonics. 12(4) (2019). https://doi.org/10.1364/AOP.361502

  47. Khorrampanah, M., Houshmand, M.: Effectively combined multi-party quantum secret sharing and secure direct communication. Opt. Quant. Electron. 54, 213 (2022). https://doi.org/10.1007/s11082-022-03575-1

    Article  Google Scholar 

  48. Mutreja, S., Krawec, W.O.: Improved semi-quantum key distribution with two almost-classical users. Quantum Inf. Process. 21, 319 (2022). https://doi.org/10.1007/s11128-022-03663-x

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Wang, Q., Liu, J., Li, Y., Yu, C., Pan, S.: Quantum Bell states-based anonymous voting with anonymity trace. Quantum Inf. Process. 20, 142 (2021). https://doi.org/10.1007/s11128-021-03081-5

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Li, C.L., Fu, Y., Liu, W.B., Xie, Y.M., Li, B.H., Zhou, M.G., Yin, H.L., Chen, Z.B.: Breaking universal limitations on quantum conference key agreement without quantum memory. Commun. Phys. 6, 122 (2023). https://doi.org/10.1038/s42005-023-01238-5

  51. Yan, L.L., Zhang, S. Bin., Chang, Y., Sheng, Z.W., Yang, F.: Mutual semi-quantum key agreement protocol using Bell states. Mod Phys Lett A. 34, 195029 (2019). https://doi.org/10.1142/S0217732319502948

    Article  MathSciNet  Google Scholar 

  52. Devetak, I., Winter, A.: Distillation of secret key and entanglement from quantum states. Proc. R. Soc. A. 2053(461), 207–235 (2005). https://doi.org/10.1098/rspa.2004.1372

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Cabello, A.: Quantum key distribution in the holevo limit[J]. Phys. Rev. Lett. 85(26), 5635 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 62172268 and 62302289;and Shanghai Science and Technology Project under Grant No. 21JC1402800 and 23YF1416200.

Author information

Authors and Affiliations

Authors

Contributions

Yi. wrote the main manuscript text and prepared Figures 1 and Tables 1, 2, 3 and 4. All authors reviewed the manuscript.

Corresponding author

Correspondence to Ri-Gui Zhou.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, HM., Zhou, RG. & Xu, RQ. Semi-quantum Key Agreement Protocol Using W States. Int J Theor Phys 62, 212 (2023). https://doi.org/10.1007/s10773-023-05467-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05467-w

Keywords

Navigation