Skip to main content
Log in

A Novel Quantum Image Steganography Algorithm Based on Double-Layer Gray Code

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In the development of quantum image steganography, the visual effect of the image has always been the focus of scholars’ research. Based on the classical Gray code algorithm and the least significant bit (LSB) algorithm, a novel quantum image steganography algorithm is proposed in this paper. Firstly, the Arnold scrambling method is used to scramble the information image. In the meantime, the scrambled information image is expanded to the same size as the carrier image by using the quantum expansion method. Secondly, the double-layer Gray code rule is applied to the carrier pixels. This operation can reduce the change rate of LSB of carrier pixels. At the same time, the key image used in the extracting phase is generated. The key image improves the security of the algorithm. The classical Gray code algorithm needs to change 50% bits of the LSB of the carrier pixels when embedding. The proposed algorithm in this paper only needs to change 25% bits of the LSB of the carrier pixels when embedding. The PSNR value of the algorithm proposed in this paper can be around 54dB in the visual effect experiment, which is around 3dB higher than that of the classical Gray code algorithm. The robustness experiment is also better compared with other algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Algorithm 1
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data Availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Venegas-Andraca, S.E., Bose, S.: Storing, processing, and retrieving an image using quantum mechanics. In: Quantum Information and Computation, vol. 5105, pp. 137–147. SPIE (2003)

  2. Latorre, J.I.: Image compression and entanglement. arXiv:quant-ph/0510031 (2005)

  3. Venegas-Andraca, S.E., Ball, J.: Processing images in entangled quantum systems. Quantum Inf. Process 9(1), 1–11 (2010)

    Article  MathSciNet  Google Scholar 

  4. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process 10(1), 63–84 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Li, H.-S., Zhu, Q., Zhou, R.-G., Song, L., Yang, X.-J.: Multi-dimensional color image storage and retrieval for a normal arbitrary quantum superposition state. Quantum Inf. Process 13(4), 991–1011 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Jiang, N., Wang, L.: Quantum image scaling using nearest neighbor interpolation. Quantum Inf. Process 14(5), 1559–1571 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Jiang, N., Wu, W., Wang, L., Zhao, N.: Quantum image pseudocolor coding based on the density-stratified method. Quantum Inf. Process 14 (5), 1735–1755 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Jiang, N., Wang, L.: Quantum image scaling using nearest neighbor interpolation. Quantum Inf. Process 14(5), 1559–1571 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Zhou, R.-G., Cheng, Y., Liu, D.: Quantum image scaling based on bilinear interpolation with arbitrary scaling ratio. Quantum Inf. Process 18(9), 1–19 (2019)

    Article  ADS  MATH  Google Scholar 

  11. Zhou, R.-G., Sun, Y.-J., Fan, P.: Quantum image Gray-code and bit-plane scrambling. Quantum Inf. Process 14(5), 1717–1734 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Jiang, N., Wang, L., Wu, W.-Y.: Quantum Hilbert image scrambling. Int. J. Theor. Phys. 53(7), 2463–2484 (2014)

    Article  MATH  Google Scholar 

  13. Zhou, R.-G., Hu, W., Fan, P., Luo, G.: Quantum color image watermarking based on Arnold transformation and LSB steganography. Int. J. Quantum Inf. 16(03), 1850021 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hu, W.-W., Zhou, R.-G., El-Rafei, A., Jiang, S.-X.: Quantum image watermarking algorithm based on Haar wavelet transform. IEEE Access 7, 121303–121320 (2019)

    Article  Google Scholar 

  15. Zhou, R.-G., Hu, W.W., Luo, G.F., Fan, P., Ian, H.: Optimal LSBs-based quantum watermarking with lower distortion. Int. J. Quantum Inf. 16(07), 1850058 (2018)

    Article  MATH  Google Scholar 

  16. Qu, Z., Cheng, Z., Liu, W., Wang, X.: A novel quantum image steganography algorithm based on exploiting modification direction. Multimed. Tools Appl. 78(7), 7981–8001 (2019)

    Article  Google Scholar 

  17. Li, P., Liu, X.: A novel quantum steganography scheme for color images. Int. J. Quantum Inf. 16(02), 1850020 (2018)

    Article  ADS  MATH  Google Scholar 

  18. Jiang, N., Dang, Y., Wang, J.: Quantum image matching. Quantum Inf. Process 15(9), 3543–3572 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Jiang, N., Zhao, N., Wang, L.: LSB based quantum image steganography algorithm. Int. J. Theor. Phys. 55(1), 107–123 (2016)

    Article  MATH  Google Scholar 

  20. Luo, G., Zhou, R.-G., Luo, J., Hu, W., Zhou, Y., Ian, H.: Adaptive LSB quantum watermarking method using tri-way pixel value differencing. Quantum Inf. Process 18(2), 1–20 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Zhou, R.-G., Luo, J., Liu, X., Zhu, C., Wei, L., Zhang, X.: A novel quantum image steganography scheme based on LSB. Int. J. Theor. Phys. 57(6), 1848–1863 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Luo, G., Zhou, R.-G., Mao, Y.: Two-level information hiding for quantum images using optimal LSB. Quantum Inf. Process 18(10), 1–19 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Zhou, Y., Zhou, R.-G., Liu, X., Luo, G.: A quantum image watermarking scheme based on two-bit superposition. Int. J. Theor. Phys. 58(3), 950–968 (2019)

    Article  MATH  Google Scholar 

  24. Qu, Z., Sun, H., Zheng, M.: An efficient quantum image steganography protocol based on improved EMD algorithm. Quantum Inf. Process 20(2), 1–29 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zeng, Q.-W., Wen, Z.-Y., Fu, J.-F., Zhou, N.-R.: Quantum watermark algorithm based on maximum pixel difference and tent map. Int. J. Theor. Phys. 60(9), 3306–3333 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen, C.-C., Chang, C.-C.: LSB-Based steganography using reflected gray code. IEICE Trans. Inf. Syst. 91(4), 1110–1116 (2008)

    Article  Google Scholar 

  27. Tirkel, A.Z., Rankin, G., Van Schyndel, R., Ho, W., Mee, N., Osborne, C.F.: Electronic watermark. Digital Image Comput. Technol. Appl. (DICTA’93):666–673 (1993)

  28. Dyson, F.J., Falk, H.: Period of a discrete cat mapping. Am. Math. Mon. 99(7), 603–614 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jiang, N., Wang, L.: Analysis and improvement of the quantum Arnold image scrambling. Quantum Inf. Process 13(7), 1545–1551 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Zhou, R.-G., Hu, W., Fan, P.: Quantum watermarking scheme through Arnold scrambling and LSB steganography. Quantum Inf. Process 16(9), 1–21 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Chatterjee, A., Ghosal, S.K., Sarkar, R.: LSB Based steganography with OCR: an intelligent amalgamation. Multimed. Tools Appl. 79(17), 11747–11765 (2020)

    Article  Google Scholar 

  32. Luo, G., Ling, M.: Novel watermarking scheme using boundary pixels least significant qubit steganography. In: 2019 3rd International Conference on Data Science and Business Analytics (ICDSBA), pp. 375–378. IEEE (2019)

  33. Luo, G., Zhou, R.-G., Hu, W., Luo, J., Liu, X., Ian, H.: Enhanced least significant qubit watermarking scheme for quantum images. Quantum Inf. Process 17(11), 1–19 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [Jin-Liang Yao], [Hong-Mei Yang], [Dong-Huan Jiang], [Bin Yan], [Jeng-Shyang Pan], [Meng-Xi Wang]. The first draft of the manuscript was written by [Jin-Liang Yao] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hong-Mei Yang.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, JL., Yang, HM., Jiang, DH. et al. A Novel Quantum Image Steganography Algorithm Based on Double-Layer Gray Code. Int J Theor Phys 62, 52 (2023). https://doi.org/10.1007/s10773-023-05303-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05303-1

Keywords

Navigation