Skip to main content
Log in

Quantum Private Magnitude Comparison Based on Maximum Operation

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Many existed quantum private comparison (QPC) protocols can determine whether two secrets are equal or not, while the quantum private magnitude comparison (QPMC) protocol by Lang can output three results: greater than, equal and less than for two private data. In order to implement the magnitude comparison, it defined the minimum operation. However, if we only rely on this operation to implement QPMC, it may not be efficient at cooperating with some quantum resources. For this reason, it is necessary for us to introduce another operation—maximum one. With regard to some quantum resources, only by using the maximum operation are we able to realize a simple and efficient QPMC. In this paper, it is the maximum operation that helps us utilize a single Bell state to propose a QPMC protocol in an easy and efficient way. The protocol is fully analysed for its correctness and security. The analyses prove that the presented protocol is not only simple yet efficient but also of low costs. It would be a better alternative for QPMC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers Systems and Signal Processing, Bangalore, India, 175–179 (1984)

  2. Zhang, H.G., Ji, Z.X., Wang, H.Z., Wu, W.Q.: Survey on quantum information security. China Commun. 16(10), 1–36 (2019)

    Article  ADS  Google Scholar 

  3. Chang, Y., Zhang, S.B., Yan, L.L., Li, X.Y., Cao, T., Wang, Q.R.: Device-independent quantum key distribution protocol based on hyper-entanglement. Computers Mater. Continua. 65(1), 879–896 (2020)

    Article  Google Scholar 

  4. Ye, T.-Y., Li, H.-K., Hu, J.-L.: Semi-quantum key distribution with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 59(9), 2807–2815 (2020)

    Article  MATH  Google Scholar 

  5. Ye, T.-Y., Geng, M.-J., Xu, T.-J., Chen, Y.: Efficient semiquantum key distribution based on single photons in both polarization and spatial-mode degrees of freedom. Quantum Inf. Process. 21(4), 123 (2022)

    Article  ADS  MATH  Google Scholar 

  6. Liao, Q., Liu, H.J., Zhu, L.J., Guo, Y.: Quantum secret sharing using discretely modulated coherent states. Phys. Rev. A. 103(3), 032410 (2021)

    Article  ADS  Google Scholar 

  7. Liu, D.M., Yan, L., Chang, L.Y., Zhang, S.B., Cao, T.: Two quantum private query protocols based on Bell states and single photons. Mod. Phys. Lett. A. 36(2), 2150005 (2021)

    Article  ADS  MATH  Google Scholar 

  8. Ye, T.Y., Li, H.K., Hu, J.L.: Information leakage resistant quantum dialogue with single photons in both polarization and spatial-mode degrees of freedom. Quantum Inf. Process. 20(6), 209 (2021)

    Article  ADS  Google Scholar 

  9. Lang, Y.-F.: Efficient Quantum dialogue using a Photon in double degrees of Freedom. Int. J. Theor. Phys. 61(4), 105 (2022)

    Article  MATH  Google Scholar 

  10. Lang, Y.-F.: Improvement of information leakage resistant quantum dialogue with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 61, 173 (2022). https://doi.org/10.1007/s10773-022-05162-2

    Article  MATH  Google Scholar 

  11. Yang, Y.G., Gao, W.F., Wen, Q.Y.: Secure quantum private comparison. Phys. Scr. 80(6), 065002 (2009)

    Article  ADS  MATH  Google Scholar 

  12. Liu, B., Gao, F., Jia, H.Y., Huang, W., Zhang, W.W., Wen, Q.Y.: Efficient quantum private comparison employing single photons and collective detection. Quantum Inf. Process. 12(2), 887–897 (2013)

    Article  ADS  MATH  Google Scholar 

  13. Chen, X.B., Su, Y., Niu, X.X., Yang, Y.X.: Efficient and feasible quantum private comparison of equality against the collective amplitude damping noise. Quantum Inf. Process. 13(1), 101–112 (2014)

    Article  ADS  MATH  Google Scholar 

  14. Sun, Z.W., Yu, J.P., Wang, P., Xu, L.L., Wu, C.H.: Quantum private comparison with a malicious third party, Quantum Inf. Process. 14(6), 2125–2133 (2015)

    MATH  Google Scholar 

  15. Ye, T.Y.: Quantum private comparison via cavity QED. Commun. Theor. Phys. 67(2), 147–156 (2017)

    Article  ADS  Google Scholar 

  16. Lang, Y.-F.: Semi-quantum private comparison using single photons. Int. J. Theor. Phys. 57(10), 3048–3055 (2018)

    Article  MATH  Google Scholar 

  17. Ye, T.-Y., Ye, C.-Q.: Measure-resend semi-quantum private comparison without entanglement. Int. J. Theor. Phys. 57(12), 3819–3834 (2018)

    Article  MATH  Google Scholar 

  18. Ye, C.-Q., Ye, T.-Y.: Multi-party quantum private comparison of size relation with d-level single-particle states. Quantum Inf. Process. 17(10), 252 (2018)

    Article  ADS  MATH  Google Scholar 

  19. Ji, Z.X., Zhang, H.G., Fan, P.R.: Two-party quantum private comparison protocol with maximally entangled seven-qubit state. Mod. Phys. Lett. A. 34(28), 1–179 (2019)

    Article  MATH  Google Scholar 

  20. Ye, C.-Q., Ye, T.-Y.: Circular multi-party quantum private comparison with n-level single-particle states. Int. J. Theor. Phys. 58(4), 1282–1294 (2019)

    Article  MATH  Google Scholar 

  21. Lang, Y.-F.: Quantum gate-based quantum private comparison. Int. J. Theor. Phys. 59(3), 833–840 (2020)

    Article  MATH  Google Scholar 

  22. Lang, Y.-F.: Quantum Private comparison without classical computation. Int. J. Theor. Phys. 59(9), 2984–2992 (2020)

    Article  MATH  Google Scholar 

  23. Huang, X., Zhang, S.B., Chang, Y., et al.: Efficient Quantum Private Comparison based on entanglement swapping of Bell States. Int. J. Theor. Phys. 60, 3783–3796 (2021)

    Article  MATH  Google Scholar 

  24. Lang, Y.-F.: Quantum Private Comparison using single Bell State. Int. J. Theor. Phys. 60(11–12), 4030–4036 (2021)

    Article  MATH  Google Scholar 

  25. Ye, T.-Y., Hu, J.-L.: Multi-party quantum private comparison based on entanglement swapping of Bell entangled states within d-level quantum system. Int. J. Theor. Phys. 60(4), 1471–1480 (2021)

    Article  MATH  Google Scholar 

  26. Lang, Y.-F.: Fast Quantum Private comparison without Keys and Entanglement. Int. J. Theor. Phys. 61(2), 45 (2022)

    Article  ADS  MATH  Google Scholar 

  27. Chou, W.H., Hwang, T., Gu, J.: Semi-quantum private comparison protocol under an almost-dishonest third party, http://arxiv.org/pdf/quant-ph/160707961.pdf

  28. Thapliyala, K., Sharmab, R.D., Pathak, A.: Orthogonal-state-based and semi-quantum protocols for quantum private comparison in noisy environment, http://arxiv.org/pdf/quant-ph/160800101.pdf

  29. Lang, Y.-F.: Quantum Private Magnitude comparison. Int. J. Theor. Phys. 61(4), 100 (2022). https://doi.org/10.1007/s10773-022-05043-8

    Article  MATH  Google Scholar 

  30. Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A. 56(2), 1154–1162 (1997)

    Article  ADS  Google Scholar 

  31. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A. 65, 032302 (2002)

    Article  ADS  Google Scholar 

  32. Li, C.Y., Zhou, H.Y., Wang, Y., Deng, F.G.: Secure quantum key distribution network with Bell states and local unitary operations. Chin. Phys. Lett. 22(5), 1049–1052 (2005)

    Article  ADS  Google Scholar 

  33. Li, C.Y., Li, X.H., Deng, F.G., Zhou, P., Liang, Y.J., Zhou, H.Y.: Efficient quantum cryptography network without entanglement and quantum memory. Chin. Phys. Lett. 23(11), 2896–2899 (2006)

    Article  ADS  Google Scholar 

  34. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lang Yan-Feng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Lt., Lang, YF. & Zhao, ZH. Quantum Private Magnitude Comparison Based on Maximum Operation. Int J Theor Phys 62, 2 (2023). https://doi.org/10.1007/s10773-022-05268-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05268-7

Keywords

Navigation