Skip to main content
Log in

Efficient semiquantum key distribution based on single photons in both polarization and spatial-mode degrees of freedom

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose an efficient semiquantum key distribution (SQKD) protocol which is based on single photons in both polarization and spatial-mode degrees of freedom. This protocol is feasible for a quantum communicant distributing a random private key to a classical communicant. This protocol need not require the classical communicant to use any quantum memory or unitary operation equipment. We validate the complete robustness of the transmissions of single photons between two communicants. It turns out that during these transmissions, if Eve wants not to be detected by two communicants, she will obtain nothing useful about the final shared key bits. Compared with Boyer et al.’s famous pioneering SQKD protocol (Phys Rev Lett 99:140501, 2007), this protocol has double quantum communication capacity, as one single photon with two degrees of freedom for generating the key bits can carry two private bits; and this protocol has higher quantum communication efficiency, as it consumes less qubits for establishing a private key of the same length. Compared with the only existing SQKD protocol with single photons in two degrees of freedom (Int J Theoret Phys 59:2807, 2020), this protocol has higher quantum communication efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1

Similar content being viewed by others

Data Availability

All data and models generated or used during the study appear in the submitted article.

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE Press, Bangalore (1984)

  2. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Phys. Rev. Lett. 99(14), 140501 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  3. Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Phys. Rev. A 79(3), 032341 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  4. Zou, X.F., Qiu, D.W., Li, L.Z., Wu, L.H., Li, L.J.: Semiquantum-key distribution using less than four quantum states. Phys. Rev. A 79, 052312 (2009)

    Article  ADS  Google Scholar 

  5. Zou, X.F., Qiu, D.W., Zhang, S.Y., Mateus, P.: Semiquantum key distribution without invoking the classical party’s measurement capability. Quantum Inf. Process. 14(8), 2981–2996 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  6. Krawec, W.O.: Security of a semi-quantum protocol where reflections contribute to the secret key. Quantum Inf. Process. 15, 2067–2090 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  7. Wang, M.M., Gong, L.M., Shao, L.H.: Efficient semiquantum key distribution without entanglement. Quantum Inf. Process. 18, 260 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  8. Wang, J., Zhang, S., Zhang, Q., Tang, C.J.: Semiquantum key distribution using entangled states. Chin. Phys. Lett. 28(10), 100301 (2011)

    Article  ADS  Google Scholar 

  9. Yu, K.F., Yang, C.W., Liao, C.H., Hwang, T.: Authenticated semi-quantum key distribution protocol using Bell states. Quantum Inf. Process. 13, 1457–1465 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  10. Krawec, W.O.: Mediated semiquantum key distribution. Phys. Rev. A 91(3), 032323 (2015)

    Article  ADS  Google Scholar 

  11. Zhu, K.N., Zhou, N.R., Wang, Y.Q., et al.: Semi-quantum key distribution protocols with GHZ states. Int. J. Theor. Phys. 57, 3621–3631 (2018)

    Article  MathSciNet  Google Scholar 

  12. Chen, L.Y., Gong, L.H., Zhou, N.R.: Two semi-quantum key distribution protocols with G-Like states. Int. J. Theor. Phys. 59, 1884–1896 (2020)

    Article  MathSciNet  Google Scholar 

  13. Zhou, N.R., Zhu, K.N., Zou, X.F.: Multi-party semi-quantum key distribution protocol with four-particle cluster states. Ann. Phys. 1800520 (2019)

  14. Liu, D., Chen, J.L., Jiang, W.: High-capacity quantum secure direct communication with single photons in both polarization and spatial- mode degrees of freedom. Int. J. Theor. Phys. 51, 2923–2929 (2012)

    Article  Google Scholar 

  15. Wang, L.L., Ma, W.P., Shen, D.S., Wang, M.L.: Efficient bidirectional quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 54, 3443–3453 (2015)

    Article  MathSciNet  Google Scholar 

  16. Zhang, C., Situ, H.Z.: Information leakage in efficient bidirectional quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 55, 4702–4708 (2016)

    Article  Google Scholar 

  17. Wang, L.L., Ma, W.P., Wang, M.L., Shen, D.S.: Three-party quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 55, 2490–2499 (2016)

    Article  Google Scholar 

  18. Ye, T.Y., Li, H.K., Hu, J.L.: Semi-quantum key distribution with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 59(9), 2807–2815 (2020)

    Article  Google Scholar 

  19. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1–2), 23–25 (2006)

    Article  ADS  Google Scholar 

  20. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)

    Article  ADS  Google Scholar 

  21. Deng, F.G., Zhou, P., Li, X.H., Li, C.Y., Zhou, H.Y.: Robustness of two-way quantum communication protocols against Trojan horse attack. 2005, http://arxiv.org/pdf/quant-ph/0508168.pdf

  22. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)

    Article  ADS  Google Scholar 

  23. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments that help enhancing the quality of this paper. Funding by the National Natural Science Foundation of China (Grant No.62071430 and No.61871347), the Fundamental Research Funds for the Provincial Universities of Zhejiang (Grant No.JRK21002) and Zhejiang Gongshang University, Zhejiang Provincial Key Laboratory of New Network Standards and Technologies (No. 2013E10012) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-Yu Ye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, TY., Geng, MJ., Xu, TJ. et al. Efficient semiquantum key distribution based on single photons in both polarization and spatial-mode degrees of freedom. Quantum Inf Process 21, 123 (2022). https://doi.org/10.1007/s11128-022-03457-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03457-1

Keywords

Navigation