Skip to main content
Log in

Efficient Quantum Secure Direct Communication Using the Orbital Angular Momentum of Single Photons

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum secure direct communication (QSDC) is to transmit information directly through quantum channels without generating secret keys. The efficiencies of QSDC rely on the capacity of qubits. Exploiting orbital angular momentum of single photons, we proposed a high-capacity one-time pad QSDC protocol. The information is encoded on the Hermite-Gauss mode and transmitted directly on the Laguerre-Gauss mode of the photon pluses. The proposed system provides a high coding space, and the proposed protocol is robust against collective-dephasing channel noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.. In: Proceedings of the IEEE international conference on computers, systems and signal processing, Bangalore, India, pp 175–179. IEEE, New York (1984)

  2. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Jennewein, T., Simon, C., Weihs, G., Weinfurter, H., Zeilinger, A.: Quantum cryptography with entangled photons. Phys. Rev. Lett. 84, 4729 (2000)

    Article  ADS  Google Scholar 

  5. Scheid, T., Ursin, R., Fedrizzi, A., Ramelow, S., Ma, X.-S., Herbst, T., Prevedel, R., Ratschbacher, L., Kofler, J., Jennewein, T., Zeilinger, A.: Feasibility of 300 km quantum key distribution with entangled states. New J. Phys. 11, 085002 (2009)

    Article  ADS  Google Scholar 

  6. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  7. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  8. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  9. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct commuication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  10. Li, X.H., et al.: Quantum secure direct communication with quantum encryption based on pure entangled states. Chin. Phys. 16, 2149–2153 (2007)

    Article  ADS  Google Scholar 

  11. Wan, T.J., Li, T., Du, F.F., Deng, F.G.: High-capacity quantum secure direct communication based on quantum hyperdense coding with hyperentanglement. Chin. Phys. Lett. 28, 040305 (2011)

    Article  ADS  Google Scholar 

  12. Gu, B., et al.: Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel. Sci. China Phys. Mech. Astron. 54, 942–947 (2011)

    Article  ADS  Google Scholar 

  13. Liu, D., Chen, J.L., Jiang, W.: High-Capacity Quantum Secure Direct Communication with Single Photons in Both Polarization and Spatial-Mode Degrees of Freedom. Int. J. Theor. Phys. 51, 2923–2929 (2012)

    Article  MATH  Google Scholar 

  14. Zhang, Q.N., Li, C.C., Li, Y.H., Nie, Y.Y.: Quantum secure direct communication based on four-qubit cluster states. Int. J. Theor. Phys. 52, 22–27 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jin, X.-R., Ji, X., Zhang, Y.-Q., Zhang, S., Hong, S.-K., Yeon, K.-H., Um, C.-I.: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A 354, 67 (2006)

    Article  ADS  Google Scholar 

  16. Lin, S., Wen, Q.-Y., Gao, F., Zhu, F.-C.: Quantum secure direct communication with χ-type entangled states. Phys. Rev. A 78, 064304 (2008)

    Article  ADS  Google Scholar 

  17. Cao, W.F., Yang, Y.G., Wen, Q.Y.: Quantum secure direct communication with cluster states. Sci. China Phys. Mech. Astron. 53, 1271–1275 (2010)

    Article  ADS  Google Scholar 

  18. Long, G.L., Wang, C., Li, Y.S., et al.: Quantum secure direct communication (in Chinese). Sci. Sin. Phys. Mech. Astron. 41, 332–342 (2011)

    Article  Google Scholar 

  19. Cao, Z.-W., Feng, X.-Y., Peng, J.-Y., Zeng, G.-H., Qi, X.-F.: Quantum secure direct communication scheme in the non-symmetric channel with high efficiency and security. Int. J. Theor. Phys. 54, 1871–1877 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Long, G.L., Deng, F.G., Wang, C., Li, X., Wen, K., Wang, W.: Quantum secure direct communication and deterministic secure quantum communication. Frontiers of Physics in China 2, 251–272 (2007)

    Article  ADS  Google Scholar 

  21. Zou, X., QIU, D.W.: Three-step semiquantum secure direct communication protocol, SCIENCE CHINA Physics. Mechanics & Astronomy 57(9), 1696–1702 (2014)

    Article  Google Scholar 

  22. Zheng, C., Long, G.F.: Quantum secure direct dialogue using Einstein-Podolsky-Rosen pairs. Sci. China Phys. Mech. Astron. 57(7), 1238–1243 (2014)

    Article  ADS  Google Scholar 

  23. Zhu, Z.-C., Hu, A.-Q., Fu, A.-M.: Cryptanalysis and improvement of the controlled quantum secure direct communication by using four particle cluster states. Int. J. Theor. Phys. 53, 1495–1501 (2014)

    Article  MATH  Google Scholar 

  24. Hwang, T., Luo, Y.-P., Yang, C.-W., Lin, T.-H.: Quantum authencryption: one-step authenticated quantum secure direct communications for off-line communicants. Quantum Inf. Process 13, 925–933 (2014)

    Article  ADS  Google Scholar 

  25. Li, W., Chen, J., Wang, X., Li, C.: Quantum secure direct communication achieved by using multi-entanglement. Int. J. Theor. Phys. 54, 100–105 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Cai, Q.-Y., Li, B.-W.: Improving the capacity of the Boström-Felbinger protocol. Phys. Rev. A 69, 054301 (2004)

    Article  ADS  Google Scholar 

  27. Allen, L., Beijersbergen, M.W., Spreeuw, R., Woerdman, J.: Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185 (1992)

    Article  ADS  Google Scholar 

  28. Djordjevic, I.B.: Multidimensional QKD based on combined orbital and spin angular momenta of photon. IEEE Photonics J 5, 7600112 (2013)

    Article  MathSciNet  Google Scholar 

  29. Simon, D.S., Lawrence, N., Trevino, J., Dal Negro, L., Sergienk, A.V.: High-capacity quantum fibonacci coding for key distribution. Phys. Rev. A 87, 032312 (2013)

    Article  ADS  Google Scholar 

  30. Krenn, M., Huber, M., Fickler, R., Lapkiewicz, R., Ramelow, S., Zeilinger, A.: Generation and confirmation of a (100 × 100)-dimensional entangled quantum system. Proc. Natl. Acad. Sci. 111.17, 6243–6247 (2014)

    Article  Google Scholar 

  31. Fickler, R., Lapkiewicz, R., Huber, M., Lavery, M., Padgett, M.J., Zeilinger, A.: Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information. Nat. Commun. 5, 4502 (2014)

    Article  ADS  Google Scholar 

  32. Garcia-Escartin, J.C., Chamorro-Posada, P.: Quantum computer networks with the orbital angular momentum of light. Phys. Rev. A 86, 032334 (2012)

    Article  ADS  Google Scholar 

  33. Dixon, P.B., Howland, G.A., Schneeloch, J., Howell, J.C.: Quantum mutual information capacity for high-dimensional entangled states. Phys. Rev. Lett. 108, 143603 (2012)

    Article  ADS  Google Scholar 

  34. Fickler, R., Lapkiewicz, R., Plick, W.N., Krenn, M., Schaeff, C., Ramelow, S., Zeilinger, A.: Quantum entanglement of high angular momenta. Science 338, 640 (2012)

    Article  ADS  Google Scholar 

  35. Mair, A., Vaziri, A., Weihs, G., Zeilinger, A.: Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001)

    Article  ADS  Google Scholar 

  36. Nagali, E., Sciarrino, F., De Martini, F., Marrucci, L., Piccirillo, B., Karimi, E., Santamato, E.: Quantum information transfer from spin to orbital angular momentum of photons. Phys. Rev. Lett. 103, 013601 (2009)

    Article  ADS  Google Scholar 

  37. Zhou, K.H., Wang, Y., Wang, T.J., Wang, C.: Implementation of high capacity quantum secret sharing using orbital angular momentum of photons. Int. J. Theor. Phys. 53, 3927 (2014)

    Article  MATH  Google Scholar 

  38. Spedalieri, F.M.: Quantum key distribution without reference frame alignment: exploiting photon orbital angular momentum. Opt. Comm. 260, 240 (2006)

    Article  Google Scholar 

  39. Wang, T.J., Cao, C., Wang, C.: Linear-optical implementation of hyperdistillation from photon loss. Phys. Rev. A 89, 052303 (2014)

    Article  ADS  Google Scholar 

  40. Zhou, L., Sheng, Y.B.: Recyclable amplification protocol for the single-photon entangled state. Laser Phys. Lett. 12, 045203 (2015)

    Article  ADS  Google Scholar 

  41. Zhou, L., Sheng, Y.B.: Distilling single-photon entanglement from photon loss and decoherence. J. Opt. Soc. Am. B 30, 2737–2742 (2013)

    Article  ADS  Google Scholar 

  42. Ou-Yang, Y., Feng, Z.F., Zhou, L., Sheng, Y.B.: Protecting single-photon entanglement with imperfect single-photon source. Quant. Inf. Process 14, 635–651 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Feng, Z.F., Ou-Yang, Y., Zhou, L., Sheng, Y.B.: Entanglement assisted single-photon W state amplification. Opt. Comm. 340, 80–85 (2015)

    Article  ADS  Google Scholar 

  44. Li, X.-H., Deng, F.-G., Zhou, H.-Y.: Faithful qubit transmission against collective noise without ancillary qubits. Appl. Phys. Lett. 91, 144101 (2007)

    Article  ADS  Google Scholar 

  45. Deng, F.-G., Li, X.-H., Zhou, H.-Y.: Passively self-error-rejecting qubit transmission over a collective-noise channel. Quantum Inform. Comput. 11, 913–924 (2011)

    MathSciNet  MATH  Google Scholar 

  46. Li, X.-H., Deng, F.-G., Zhou, H.-Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China through Grants (No. 11404031, No. 61205117), the Fundamental Research Funds for the Central Universities (No. 2014RC0903). And the fund of State Key Laboratory of Information Photonics and Optical Communications (BUPT), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tie-Jun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jian, ZR., Jin, GS. & Wang, TJ. Efficient Quantum Secure Direct Communication Using the Orbital Angular Momentum of Single Photons. Int J Theor Phys 55, 1811–1819 (2016). https://doi.org/10.1007/s10773-015-2820-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2820-y

Keywords

Navigation