Skip to main content
Log in

Quantum Secure Direct Communication Based on Four-Qubit Cluster States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A novel quantum secure direct communication scheme based on four-qubit cluster states is proposed. In this scheme, the quantum channel between the sender Alice and the receiver Bob consists of an ordered sequence of cluster states which are prepared by Alice. After ensuring the security of quantum channel, Alice prepares the encoded Bell-state sequence, and performs Bell-basis measurements on the qubits at hand. Then Alice tells the measured results to Bob, and Bob also performs Bell-basis measurements on his own qubits. Finally Bob can get the secret information through the analysis of their measured results. In our scheme, the qubits carrying the secret message do not need to be transmitted in public channel. We show this scheme is determinate and secure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proc. IEEE Int. Conf. on Computers, Systems and Signal Processing, Bangalore, India, p. 175. IEEE, New York (1984)

    Google Scholar 

  2. Ekert, A.K.: Phys. Rev. Lett. 67, 661 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bennett, C.H., Brassard, G., Mermin, N.D.: Phys. Rev. Lett. 68, 557 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Long, G.L., Liu, X.S.: Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  5. Gisin, N., Ribordy, G., Tittel, W., et al.: Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  6. Deng, F.G., Long, G.L.: Phys. Rev. A 68, 042315 (2003)

    Article  ADS  Google Scholar 

  7. Deng, F.G., Long, G.L.: Phys. Rev. A 70, 012311 (2004)

    Article  ADS  Google Scholar 

  8. Zhang, Z.J., Man, Z.X., Shi, S.H.: Int. J. Quantum Inf. 3, 555 (2005)

    Article  MATH  Google Scholar 

  9. Beige, A., Englert, B.G., Kurtsiefer, C., Weinfurter, H.: Acta Phys. Pol. A 101, 357 (2002)

    ADS  Google Scholar 

  10. Bostrom, K., Felbinger, T.: Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  11. W’ojcik, A.: Phys. Rev. Lett. 90, 157901 (2003)

    Article  ADS  Google Scholar 

  12. Zhang, Z.J., Man, Z.X., Li, Y.: Phys. Lett. A 333, 46 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Deng, F.G., Long, G.L.: Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  14. Deng, F.G., Long, G.L., Liu, X.S.: Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  15. Deng, F.G., Li, X.H., Li, C.Y., et al.: Phys. Lett. A 359, 359 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Yi, X.J., Nie, Y.Y., Zhou, N.R., et al.: Commun. Theor. Phys. 50, 81 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  17. Yi, X.J., Nie, Y.Y., Zhou, N.R., Huang, Y.B., Hong, Z.H.: Int. J. Theor. Phys. 47, 3401 (2008)

    Article  MATH  Google Scholar 

  18. Zhu, A.D., Xia, Y., Fan, Q.B., et al.: Phys. Rev. A 73, 022338 (2006)

    Article  ADS  Google Scholar 

  19. Li, X.H., Deng, F.G., Zhou, H.Y.: Phys. Rev. A 74, 054302 (2006)

    Article  ADS  Google Scholar 

  20. Li, X.H., Li, C.Y., Deng, F.G., et al.: Chin. Phys. B 16, 2149 (2007)

    Article  Google Scholar 

  21. Wang, J., Zhang, Q., Tang, C.J.: Phys. Lett. A 358, 256 (2006)

    Article  ADS  MATH  Google Scholar 

  22. Lee, H., Lim, J., Yang, H.J.: Phys. Rev. A 73, 042305 (2006)

    Article  ADS  Google Scholar 

  23. Wang, C., Deng, F.G., Long, G.L.: Opt. Commun. 253, 15 (2005)

    Article  ADS  Google Scholar 

  24. Jin, X.R., Ji, X., Zhang, Y.Q., et al.: Phys. Lett. A 354, 67 (2006)

    Article  ADS  Google Scholar 

  25. Wang, J., Zhang, Q., Tang, C.J.: Opt. Commun. 266, 732 (2006)

    Article  ADS  Google Scholar 

  26. Briegel, H.J., Raussendrof, R.: Phys. Rev. Lett. 86, 910 (2001)

    Article  ADS  Google Scholar 

  27. Li, D.C., Cao, Z.L.: Commun. Theor. Phys. 47, 464 (2007)

    Article  ADS  Google Scholar 

  28. Dong, P., et al.: Phys. Rev. A 73, 033818 (2006)

    Article  ADS  Google Scholar 

  29. Wang, G.Y., Fang, X.M., Tan, X.H.: Chin. Phys. Lett. 23, 2658 (2006)

    Article  ADS  Google Scholar 

  30. Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Chin. Phys. Lett. 25, 2766 (2008)

    Article  ADS  Google Scholar 

  31. Cao, W.F., Yang, Y.G., Wen, Q.Y.: Sci. China Ser. G, Phys. Mech. Astron. 53, 1271 (2010)

    Article  ADS  Google Scholar 

  32. Yuan, H., Song, J.: Int. J. Quantum Inf. 7, 689 (2009)

    Article  MATH  Google Scholar 

  33. Sun, Z.W., Du, R.G., Long, D.Y.: Int. J. Theor. Phys. 51, 1946 (2012)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China; the Natural Science Foundation of Jiangxi Province, China; the Research Foundation of state key laboratory of advanced optical communication systems and networks, Shanghai Jiao Tong University, China, and the Research Foundation of the Education Department of Jiangxi Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-you Nie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Qn., Li, Cc., Li, Yh. et al. Quantum Secure Direct Communication Based on Four-Qubit Cluster States. Int J Theor Phys 52, 22–27 (2013). https://doi.org/10.1007/s10773-012-1294-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-012-1294-4

Keywords

Navigation