Skip to main content
Log in

Volcanic Soils: Inverse Modeling of Thermal Conductivity Data

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Volcanic ash soils are formed from ash and cinder deposits that largely consist of non-crystalline minerals, volcanic glass and organic matter. Their application to engineering ground technology requires a thorough knowledge and good understanding of their historical formation, structure, mineralogy and thermal and hydraulic properties. Consequently, inverse modeling was applied to the thermal conductivity (λ) data of 22 soils from Hokkaido (northern Japan). A large majority of these soils contained volcanic ash that markedly influenced their physical properties. For example, 11 natural soils (volcanic, highland and lowland soils) had average λ values of 0.14 W·m−1·K−1 and 0.52 W·m−1·K−1 at dryness (λdry) and saturation (λsat), respectively. The inverse modeling of λ data revealed that the average λ values of soil solids (λs) and volcanic glass (λvgl) were about 0.48 W·m−1·K−1 and 0.25 W·m−1·K−1, respectively. The influence of organic matter on λs was found to have a minor effect. A reverse analysis of saturated frozen soils revealed that, at − 5 °C, about 87 % of water was converted into ice, i.e., unfrozen water content (θun-w) ≈ 0.13.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Exp:

Experimental

K e :

Kersten number

m :

Mass fraction

M :

Number of parameter

n :

Porosity

N :

Number of measurement

S r :

Degree of saturation

Sat:

Saturation

T :

Temperature (°C) or (K)

V :

Volume (m3)

w:

Mass content

α :

Fitting parameter

β :

Fitting parameter

θ :

Volumetric fraction of water/air content

Θ :

Volumetric fraction of mineral content

λ :

Thermal conductivity (W·m−1·K−1)

ρ :

Density (kg·m−3)

ave:

Average

cal:

Calculated

dry:

Dryness

ds:

Dry soil

exp:

Experimental

fit:

Fitted

fro:

Frozen

glass:

Glass

i:

Ice

max:

Maximum

o-m:

Organic matter

o-min:

Other primary minerals

qtz:

Quartz

s:

Soil solid

sa:

Sand

sat:

Saturation

sec-min:

Secondary minerals

tot:

Total

un-w:

Unfrozen water

un:

Unfrozen

vgl:

Volcanic glass

w:

Water

RMSE:

Root-mean-square error

LRGH:

Lu–Ren–Gong–Horton

References

  1. S. Sasaki, Hydrogen peroxide treatment on typical Hokkaido soils. Soil Sci. Plant Nutr. 6, 106–113 (1961). https://doi.org/10.1080/00380768.1961.10430935

    Article  ADS  Google Scholar 

  2. G. Bovesecchi, P. Coppa, M. Potenza, A numerical model to explain experimental results of effective thermal conductivity measurements on unsaturated soils. Int. J. Thermophys. 38, 68 (2017). https://doi.org/10.1007/s10765-017-2202-1

    Article  ADS  Google Scholar 

  3. S. Shoji, Mineralogical properties of volcanic ash soils, in Volcanic Ash Soil: Genesis, Properties and Classification, ed. by N. Yoshinaga, Tokyo (1983), pp. 31–72

  4. S. Shoji, M. Nanzyo, R.A. Dahlgren, Volcanic Ash Soils: Genesis, Properties and Utilization (Elsevier Science, Amsterdam, 1994), ISBN: 9780444897992

  5. M. Nanzyo, Unique properties of volcanic ash soils. Glob. Environ. Res. 6, 99–112 (2002)

    Google Scholar 

  6. T. Tazaki, T. Tiba, M. Aratani, M. Miyachi, Structural water in volcanic glass. Clay Clay Miner. 40, 122–127 (1992). https://doi.org/10.1346/CCMN.1992.0400113

    Article  ADS  Google Scholar 

  7. F. Ugolini, R.A. Dahlgren, Soil development in volcanic ash. Glob. Environ. Res. 6, 69–81 (2002)

    Google Scholar 

  8. R.V. Fisher, H.U. Schmincke, Pyroclastic Rocks (Springer, Berlin, 1984). https://doi.org/10.1007/978-3-642-74864-6

    Book  Google Scholar 

  9. S. Shoji, J. Masui, Opaline silica of recent volcanic ash soils in Japan. J. Soil Sci. 22, 101–108 (1971). https://doi.org/10.1111/j.1365-2389.1971.tb01597.x

    Article  Google Scholar 

  10. The Encyclopedia of NZ, https://sindi.landcareresearch.co.nz/Content/soils.html

  11. T. Maeda, H. Takenaka, B.P. Warkentin, Physical properties of allophane soils, in Advances in Agronomy, ed. by N.C. Brady (1977), pp. 229–264

  12. B.P. Warkentin, T. Maeda, Physical properties of allophane soils from the West Indies and Japan. Soil Sci. Soc. Am. J. 38, 372–377 (1974). https://doi.org/10.2136/sssaj1974.03615995003800020042x

    Article  ADS  Google Scholar 

  13. A. Higashi, Thermal conductivity of frozen soil. J. Fac. Sci. U Hokkaido 40, 95–106 (1952)

    Google Scholar 

  14. P.H. Cochran, L. Boersma, C.T. Youngberg, Thermal properties of a pumice soil. Soil Sci. Soc. Am. J. 31, 454–459 (1967). https://doi.org/10.2136/sssaj1967.03615995003100040013x

    Article  ADS  Google Scholar 

  15. T. Kasabuchi, The effect of soil moisture on thermal properties in some typical Japanese upland soils. Soil Sci. Plant Nutr. 21, 107–112 (1974). https://doi.org/10.1080/00380768.1975.10432626

    Article  Google Scholar 

  16. T. Maeda, K. Soma, K. Ikehata, Thermal properties greatly related to water retention of Kuroboku soils (organo-volcanic ash soils). Trans. JSIDRE 103, 13–21 (1983). https://doi.org/10.11408/jsidre1965.1983.13

    Article  Google Scholar 

  17. K. Soma, T. Maeda, Y. Fujiwara, H. Hamada, Heat conduction of volcanic ash soils [Japan]. Soil Phys. Cond. Plant Growth 54, 28–35 (1987)

    Google Scholar 

  18. S. Suzuki, K. Soma, J. Kashiwagi, S. Nakagawa, Structure and thermal conductivity of pumice soils deposited in Central Hokkaido. Trans. JSIDRE 213, 331–342 (2001). 10.11408/jsidre1965.2001.331

    Google Scholar 

  19. M. Antilén, M. Escudey, J.E. Förster, N. Moraga, D. Marty, O. Fudym, Application of the hot disc method to the thermophysical characterization of soils. J. Chil. Chem. Soc. 48, 27–29 (2003). https://doi.org/10.4067/S0717-97072003000300005

    Article  Google Scholar 

  20. M.C. Herrera, A. Lizcano, J.C. Santamarina, Colombian volcanic ash soils, in 1st International Workshop on Characterisation and Engineering Properties of Natural Soils, 3-4 2385-2410 (2002), ISBN: 978-041540267-5

  21. E. Kuznetsova, R. Motenko, Weathering of volcanic ash in the cryogenic zone of Kamchatka, eastern Russia. Clay Miner. 49, 192–212 (2014). https://doi.org/10.1180/claymin.2014.049.2.04

    Article  ADS  Google Scholar 

  22. C. Clauser, E. Huenges, Thermal conductivity of rocks and minerals, in Rock Physics & Phase Relations: A Handbook of Physical Constants, ed. by J.A. Thomas (1995), pp. 105–126

  23. T. Tokoro, S. Shirai, T. Nakamura, T. Ishikawa, Effect of moisture content on thermal conductivity of soils, in Unsaturated Soils: Research & Applications, ed. by N. Khalili, A. Russel, A. Khoshghalb, London (2014)

  24. S. Sawada, T. Ohno, Laboratory studies on thermal conductivity of clay, silt and sand, in frozen and unfrozen states, in Fourth Int. Symp. On Ground Freezing, vol. 2 (1985), pp. 53–58, ISBN: 9789061916048

  25. S. Suzuki, J. Kashiwagi, S. Nakagawa, K. Soma, Mechanism of hysteresis in thermal conductivity of frozen soils between freezing and thawing processes. Trans. JSIDRE 218, 223–231 (2002). https://doi.org/10.11408/jsidre1965.2002.223

    Article  Google Scholar 

  26. T. Momose, T. Kasubuchi, Effect of reduced air pressure on soil thermal conductivity over a wide range of water content and temperature. Eur. J. Soil Sci. 53, 599–608 (2002). https://doi.org/10.1046/j.1365-2389.2002.00474.x

    Article  Google Scholar 

  27. G. Bovesecchi, P. Coppa, Basic problems in thermal-conductivity measurements of soils. Int. J. Thermophys. 34, 1962–1974 (2013). https://doi.org/10.1007/s10765-013-1503-2

    Article  ADS  Google Scholar 

  28. M.L. McCombie, V.R. Tarnawski, G. Bovesecchi, P. Coppa, W.H. Leong, Thermal conductivity of pyroclastic soil (Pozzolana) from the environs of Rome. Int. J. Thermophys. 38, 21 (2017). https://doi.org/10.1007/s10765-016-2161-y

    Article  ADS  Google Scholar 

  29. Y. Yamazaki, F. Tsuchiya, O. Tsuji, Measurement and estimation of thermal conductivity of quartz containing frozen and unfrozen soils. Trans. JSIDRE 226, 497–505 (2003). https://doi.org/10.1007/s10765-016-2161-y

    Article  Google Scholar 

  30. Y. Yamazaki, “Verification and estimation of thermal conductivity of frozen and unfrozen soils containing quartz and organic matter”, Ph.D. Thesis, pp. Iwate University, Japan (2004)

  31. T. Kasabuchi, A study on heat conduction in soils. Bull. Nat. Inst. Agric. Sci. B33, 1–54 (1982)

    Google Scholar 

  32. O.T. Farouki, Thermal Properties of Soils (Trans Tech Pub, Rockport, 1986)

    Google Scholar 

  33. V.R. Tarnawski, M.L. McCombie, W.H. Leong, B. Wagner, T. Momose, J. Schönenberger, Canadian field soils II. Modeling of quartz occurrence. Int. J. Thermophys. 33, 843–863 (2012). https://doi.org/10.1007/s10765-012-1184-2

    Article  ADS  Google Scholar 

  34. O. Johansen, Thermal Conductivity of Soils, Corps of Engineers U.S. Army, Cold Regions Research and Engineering Laboratory (Hanover, N.H) (1977)

  35. S. Lu, T. Ren, Y. Gong, R. Horton, An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Sci. Soc. Am. J. 71, 8–14 (2007). https://doi.org/10.2136/sssaj2006.0041

    Article  ADS  Google Scholar 

  36. V.R. Tarnawski, T. Momose, W.H. Leong, Performance evaluation of soil thermal conductivity models, in Conference on Thermal and Environmental Issues in Energy Systems (2010)

  37. V.R. Tarnawski, M.L. McCombie, W.H. Leong, P. Coppa, S. Corasaniti, G. Bovesecchi, Canadian field soils IV: modeling thermal conductivity at dryness and saturation. Int. J. Thermophys. 39, 35 (2018). https://doi.org/10.1007/s10765-017-2357-9

    Article  ADS  Google Scholar 

  38. V.R. Tarnawski, T. Momose, W.H. Leong, Assessing the impact of quartz content on the prediction of soil thermal conductivity. Géotechnique 59, 331–338 (2009). https://doi.org/10.1680/geot.2009.59.4.331

    Article  Google Scholar 

Download references

Acknowledgements

The authors are expressing sincere thanks for Hokkaido University of Education (Hakodate, Japan) and Saint Mary’s University in Halifax (Canada) for supporting this research and also to Mr. Marlon L. McCombie for his comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Bovesecchi.

Appendices

Appendix 1: Physical Characteristics of 22 Soils from Hokkaido

Soil name

Soil code

m clay

m silt

m sand

Θ qtz

n

S r-max

m org

Texture

Obihiro

Tsu-1

0.050

0.400

0.550

0.075

0.582

0.662

0.000

Sandy soil

East Otofuke-1

Tsu-2

0.080

0.200

0.720

0.209

0.593

0.650

0.000

Fine gravel

East Otofuke-2

Tsu-3

0.030

0.100

0.870

0.142

0.566

0.874

0.000

Very fine sand

Kawabata-1

Tsu-4

0.030

0.200

0.770

0.070

0.572

0.962

0.000

Sandy soil

Kawabata-2

Tsu-5

0.020

0.200

0.780

0.042

0.572

0.962

0.000

Sticky clay

Kyouwa-1

Tsu-6

0.030

0.090

0.880

0.054

0.584

0.753

0.000

Very fine sand

Kyouwa-2

Tsu-7

0.350

0.430

0.220

0.080

0.586

0.939

0.000

Volcanic ash sticky soil

Takaoka-1

Tsu-8

0.080

0.450

0.470

0.082

0.592

0.837

0.000

Fine gravel

Takaoka-2

Tsu-9

0.015

0.245

0.740

0.055

0.572

0.673

0.000

Fine gravel

Touya-1

Tsu-10

0.100

0.300

0.600

0.031

0.601

0.915

0.000

Fine gravel

Touya-2

Tsu-11

0.020

0.260

0.720

0.159

0.562

0.784

0.000

Fine gravel

Volcanic-1

Tsu-12

0.160

0.120

0.720

0.094

0.577

0.857

0.019

Coarse dry volcanic ash soil

Volcanic-2

Tsu-13

0.105

0.115

0.780

0.082

0.558

0.986

0.024

Coarse wet volcanic ash soil

Volcanic-3

Tsu-14

0.055

0.645

0.300

0.124

0.555

0.991

0.052

Fine dry volcanic ash soil

Volcanic-4

Tsu-15

0.240

0.430

0.330

0.106

0.569

0.967

0.047

Fine wet volcanic ash soil

Volcanic-5

Tsu-16

0.170

0.400

0.430

0.134

0.583

0.943

0.021

Light colored Kuroboku

Volcanic-6

Tsu-17

0.110

0.460

0.430

0.087

0.570

0.965

0.082

Very wet Kuroboku

Lowland-1

Tsu-18

0.070

0.500

0.430

0.335

0.584

0.753

0.021

Medium size brown lowland

Lowland-2

Tsu-19

0.110

0.690

0.200

0.176

0.579

0.950

0.029

Fine size brown lowland

Highland-1

Tsu-20

0.100

0.400

0.500

0.300

0.581

0.663

0.010

Brown forest soil

Highland-2

Tsu-21

0.080

0.360

0.560

0.315

0.582

0.662

0.008

Brown forest soil

Highland-3

Tsu-22

0.090

0.320

0.590

0.272

0.578

0.666

0.017

Brown forest soil

Appendix 2: Thermal Conductivity Data for 11 Soils from Hwy Construction Site

Soil code

θ w

20 °C

− 5 °C

Soil code

θ w

20 °C

-5 °C

λ exp-wet

λ exp-fro

λ exp-wet

λ exp-fro

Tsu-1

n = 0.58

0.00

0.090

0.089

Tsu-2

n = 0.59

0.00

0.132

0.138

 

0.06

0.096

0.09

 

0.06

0.145

0.152

 

0.06

0.117

0.099

 

0.11

0.135

0.164

 

0.17

0.176

0.183

 

0.17

0.186

0.223

 

0.22

0.213

0.311

 

0.22

0.409

0.455

 

0.28

0.323

0.425

 

0.28

0.425

0.458

 

0.33

0.468

0.546

 

0.33

0.430

0.529

 

0.39

0.504

0.595

 

0.39

0.436

0.595

Tsu-3

n = 0.57

0.00

0.104

0.092

Tsu-4

n = 0.57

0.00

0.087

0.081

 

0.06

0.106

0.106

 

0.06

0.097

0.093

 

0.11

0.137

0.173

 

0.11

0.101

0.091

 

0.17

0.141

0.255

 

0.17

0.107

0.089

 

0.22

0.159

0.262

 

0.22

0.112

0.101

 

0.28

0.209

0.271

 

0.28

0.097

0.153

 

0.33

0.242

0.315

 

0.33

0.111

0.179

 

0.39

0.280

0.325

 

0.39

0.195

0.223

 

0.44

0.321

0.397

 

0.44

0.213

0.229

 

0.50

0.468

0.51

 

0.50

0.298

0.357

     

0.55

0.458

0.536

Tsu-5

n = 0.57

0.00

0.077

0.071

Tsu-6

n = 0.58

0.00

0.090

0.125

 

0.06

0.078

0.081

 

0.06

0.134

0.109

 

0.11

0.077

0.088

 

0.11

0.128

0.137

 

0.17

0.078

0.091

 

0.17

0.160

0.18

 

0.22

0.113

0.125

 

0.22

0.164

0.206

 

0.28

0.152

0.123

 

0.28

0.158

0.275

 

0.33

0.137

0.221

 

0.33

0.174

0.335

 

0.39

0.164

0.271

 

0.39

0.265

0.566

 

0.44

0.312

0.433

 

0.44

0.397

0.595

 

0.50

0.309

0.529

    
 

0.55

0.484

0.654

    

Tsu-7

n = 0.59

0.00

0.087

0.092

Tsu-8

n = 0.59

0.00

0.082

0.104

 

0.06

0.116

0.099

 

0.06

0.104

0.109

 

0.11

0.143

0.104

 

0.11

0.119

0.113

 

0.17

0.149

0.116

 

0.17

0.144

0.159

 

0.22

0.153

0.154

 

0.22

0.162

0.17

 

0.28

0.154

0.198

 

0.28

0.198

0.27

 

0.33

0.198

0.234

 

0.33

0.207

0.268

 

0.39

0.234

0.321

 

0.39

0.327

0.34

 

0.44

0.271

0.496

 

0.44

0.397

0.409

 

0.50

0.337

0.51

 

0.50

0.409

0.447

 

0.55

0.439

0.541

    

Tsu-9

n = 0.57

0.00

0.101

0.113

Tsu-10

n = 0.60

0.00

0.101

0.094

 

0.06

0.105

0.114

 

0.06

0.122

0.119

 

0.11

0.121

0.115

 

0.11

0.134

0.141

 

0.17

0.136

0.149

 

0.17

0.177

0.143

 

0.22

0.163

0.158

 

0.22

0.179

0.172

 

0.28

0.246

0.318

 

0.28

0.193

0.179

 

0.33

0.447

0.463

 

0.33

0.233

0.19

 

0.39

0.521

0.567

 

0.39

0.391

0.42

     

0.44

0.417

0.476

     

0.50

0.496

0.51

     

0.55

0.536

0.566

Tsu-11

n = 0.56

0.00

0.089

0.095

    
 

0.06

0.121

0.132

    
 

0.11

0.149

0.159

    
 

0.17

0.205

0.223

    
 

0.22

0.372

0.409

    
 

0.28

0.447

0.496

    
 

0.33

0.541

0.695

    
 

0.39

0.819

0.834

    
 

0.44

0.936

0.97

    

Appendix 3: Thermal Conductivity Data for 11 Natural Soils from Hokkaido

Soil code

θ w

20 °C

− 5 °C

Soil code

θ w

20 °C

-5 °C

λ exp-wet

λ exp-fro

λ exp-wet

λ exp-fro

Tsu-12

n = 0.58

0

0.137

0.134

Tsu-13

n = 0.56

0

0.125

0.137

 

0.055

0.164

0.158

 

0.055

0.155

0.155

 

0.11

0.197

0.226

 

0.11

0.188

0.179

 

0.165

0.214

0.238

 

0.165

0.223

0.197

 

0.22

0.223

0.322

 

0.22

0.226

0.256

 

0.275

0.268

0.333

 

0.275

0.256

0.298

 

0.33

0.339

0.405

 

0.33

0.292

0.298

 

0.385

0.417

0.482

 

0.385

0.31

0.351

 

0.44

0.53

0.596

 

0.44

0.345

0.375

 

0.495

0.607

0.655

 

0.495

0.369

0.423

     

0.55

0.393

0.482

Tsu-14

n = 0.55

0

0.113

0.119

Tsu-15

n = 0.67

0

0.137

0.167

 

0.055

0.119

0.125

 

0.055

0.152

0.176

 

0.11

0.14

0.179

 

0.11

0.155

0.197

 

0.165

0.161

0.179

 

0.165

0.161

0.191

 

0.22

0.197

0.238

 

0.22

0.194

0.202

 

0.275

0.226

0.262

 

0.275

0.223

0.244

 

0.33

0.283

0.351

 

0.33

0.244

0.286

 

0.385

0.372

0.465

 

0.385

0.232

0.256

 

0.44

0.447

0.512

 

0.44

0.268

0.322

 

0.495

0.506

0.613

 

0.495

0.274

0.345

 

0.55

0.586

0.691

 

0.55

0.316

0.36

Tsu-16

n = 0.58

0

0.137

0.167

Tsu-17

n = 0.57

0

0.113

0.116

 

0.055

0.146

0.176

 

0.055

0.107

0.122

 

0.11

0.155

0.182

 

0.11

0.146

0.176

 

0.165

0.161

0.202

 

0.165

0.137

0.188

 

0.22

0.173

0.205

 

0.22

0.173

0.191

 

0.275

0.182

0.226

 

0.275

0.185

0.229

 

0.33

0.205

0.202

 

0.33

0.191

0.22

 

0.385

0.223

0.286

 

0.385

0.197

0.232

 

0.44

0.256

0.25

 

0.44

0.202

0.295

 

0.495

0.328

0.31

 

0.495

0.244

0.292

 

0.55

0.345

0.363

 

0.55

0.277

0.31

Tsu-18

n = 0.58

0

0.17

0,185

Tsu-19

n = 0.58

0

0.116

0.137

 

0.055

0.179

0.199

 

0.055

0.131

0.155

 

0.11

0.185

0.223

 

0.11

0.161

0.173

 

0.165

0.202

0.256

 

0.165

0.197

0.199

 

0.22

0.328

0.36

 

0.22

0.202

0.214

 

0.275

0.575

0.607

 

0.275

0.232

0.256

 

0.33

0.601

0.715

 

0.33

0.256

0.292

 

0.385

0.637

0.786

 

0.385

0.357

0.447

 

0.44

0.655

0.834

 

0.44

0.462

0.476

     

0.495

0.485

0.542

     

0.55

0.5

0.607

Tsu-20

n = 0.58

0

0.125

0.155

Tsu-21

n = 0.58

0

0.167

0.158

 

0.055

0.158

0.179

 

0.055

0.214

0.211

 

0.11

0.217

0.197

 

0.11

0.226

0.253

 

0.165

0.33

0.333

 

0.165

0.292

0.307

 

0.22

0.453

0.393

 

0.22

0.357

0.387

 

0.275

0.494

0.566

 

0.275

0.488

0.494

 

0.33

0.509

0.557

 

0.33

0.53

0.536

 

0.385

0.53

0.625

 

0.385

0.554

0.59

Tsu-22

n = 0.58

0

0.152

0.191

    
 

0.055

0.185

0.208

    
 

0.11

0.214

0.241

    
 

0.165

0.268

0.294

    
 

0.22

0.375

0.345

    
 

0.275

0.447

0.476

    
 

0.33

0.47

0.53

    
 

0.385

0.536

0.56

    

Appendix 4: Normalized Thermal Conductivity Model and Predictive Results

The normalized λ model shows a superior predictive performance for each of 22 soils. However, there are no general equations for λdry and λsat that would be applicable to all soils under investigation. Therefore, measured λdry and extended λsat (Table 1) were applied to λ modeling. The λ estimates by LRGH model, with individually determined αsat and βsat, closely follow experimental data. The use of overall coefficients (α and β) applied to six volcanic soils or the remaining 16 soils provided satisfactory λ estimations.

In general, volcanic soils (Tsu 12–17) displayed a smooth λ change over the entire range of Sr. Their λsat values are low for both unfrozen and frozen soils, varying from 0.27 W·m−1·K−1 to 0.70 W·m−1·K−1. In theory, the organic content, associated with these soils, should noticeably contribute to very low λ values; however, this impact was found to be a minor one. The low λ values can be due to low λvgl and coating of sand and silt particles with allophane. Figures 1 and 2 display λ versus Sr for unfrozen and frozen conditions.

Fig. 1
figure 1

Volcanic ash soil: experimental λ data versus modeling results

Fig. 2
figure 2

Kuroboku soil: experimental λ data versus modeling results

The lowland and highland soils (Tsu 18–22) also had low λsat data that varied from 0.55 W·m−1·K−1 to 0.70 W·m−1·K−1 with moderate amounts of organic content. At very low moisture content (0 < Sr < 0.25), λ ≈ λdry, then a steady λ increase was observed. Figure 3 displays a typical λ versus Sr relation for these soils.

Fig. 3
figure 3

Lowland soil: experimental λ data versus modeling results

Thermal conductivity data of construction soils (Tsu 1–11) were also modeled. Figures 3 and 4 display experimental λ data versus predictive models.

Fig. 4
figure 4

Sandy soil: experimental λ data versus modeling results

Kawabata-1 soil (Tsu-4) is a coarse sand (msa = 0.77) with a negligible quartz content (Θqtz = 0.07). Its experimental λ remained constant within Sr ranging from 0 to 0.5; then, a rapid λ increase, by a factor of 5, was observed. The highest experimental λ value was at Sr = 0.95; therefore, λsat predictions may be close to accurate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarnawski, V.R., Tsuchiya, F., Coppa, P. et al. Volcanic Soils: Inverse Modeling of Thermal Conductivity Data. Int J Thermophys 40, 14 (2019). https://doi.org/10.1007/s10765-018-2480-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-018-2480-2

Keywords

Navigation