Skip to main content

Advertisement

Log in

Ecological thresholds of Odonata larvae to anthropogenic disturbances in neotropical savanna headwater streams

  • Stream Ecology
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We evaluated whether ecological thresholds could be detected along gradients of disturbances by using larval Odonata genera. Morphological, physiological, and behavioral differences between Odonata suborders may be reflected in different thresholds to anthropogenic disturbance. Therefore, we hypothesized that larval Zygoptera genera would have narrower ecological thresholds in response to increased levels of stream disturbance and would be considered sensitive to anthropogenic disturbances, and the opposite for larval Anisoptera genera, which would have wider ecological thresholds and would be considered tolerant to anthropogenic disturbances. We assessed 30 larval Odonata genera collected from 186 headwater stream sites in the Neotropical Savanna. Threshold Indicator Taxa Analysis detected ecological thresholds in seven Odonata genera (Argia, Brechmorhoga, Cacoides, Gomphoides, Phyllocycla, Progomphus and Hetaerina) revealing them as robust bioindicators (purity and reliability ≥ 0.85). Most Zygoptera were associated with less-disturbed sites and most Anisoptera were associated with more-disturbed sites, but not all genera corresponded to this pattern. Therefore, we recommend using Odonata larvae at the genus-level, versus the suborder level, for constructing improved biomonitoring tools and obtaining more accurate impact assessments of neotropical stream sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Agra, J., R. Ligeiro, J. Heino, D. R. Macedo, D. M. P. Castro, M. S. Linares & M. Callisto, 2021. Anthropogenic disturbances alter the relationships between environmental heterogeneity and biodiversity of stream insects. Ecological Indicators 121: 107079. https://doi.org/10.1016/j.ecolind.2020.107079.

    Article  Google Scholar 

  • Araújo, M. F. A., P. De Marco, L. Juen & N. M. Tôrres, 2020. Vulnerability of Phyllocycla species (Odonata: Gomphidae) to current and planned anthropic activities by the brazilian government. Neotropical Entomology 49: 24–32.

    Article  PubMed  Google Scholar 

  • Assis, J. C. F., A. L. Carvalho & J. L. Nessimian, 2004. Composição e preferência por microhábitat de imaturos de Odonata (Insecta) em um trecho de baixada do Rio Ubatiba, Maricá-RJ, Brasil. Revista Brasileira De Entomologia 48: 273–282. https://doi.org/10.1007/s13744-019-00714-4.

    Article  CAS  Google Scholar 

  • Baker, M. E., R. S. King, & D. Kahle, 2020. Package ‘TITAN2’.

  • Baker, M. E. & R. S. King, 2010. A new method for detecting and interpreting biodiversity and ecological community thresholds. Methods in Ecology and Evolution 1: 25–37. https://doi.org/10.1111/j.2041-210x.2009.00007.x.

    Article  Google Scholar 

  • Birk, S., D. Chapman, L. Carvalho, B. M. Spears, H. E. Andersen, C. Argillier, S. Auer, A. Baattrup-Pedersen, L. Banin, M. Beklioğlu, E. Bondar-Kunze, A. Borja, P. Branco, T. Bucak, A. D. Buijse, A. C. Cardoso, R. M. Couture, F. Cremona, D. de Zwart, C. K. Feld, M. T. Ferreira, H. Feuchtmayr, M. O. Gessner, A. Gieswein, L. Globevnik, D. Graeber, W. Graf, C. Gutiérrez-Cánovas, J. Hanganu, U. Işkın, M. Järvinen, E. Jeppesen, N. Kotamäki, M. Kuijper, J. U. Lemm, S. Lu, A. L. Solheim, U. Mischke, S. J. Moe, P. Nõges, T. Nõges, S. J. Ormerod, Y. Panagopoulos, G. Phillips, L. Posthuma, S. Pouso, C. Prudhomme, K. Rankinen, J. J. Rasmussen, J. Richardson, A. Sagouis, J. M. Santos, R. B. Schäfer, R. Schinegger, S. Schmutz, S. C. Schneider, L. Schülting, P. Segurado, K. Stefanidis, B. Sures, S. J. Thackeray, J. Turunen, M. C. Uyarra, M. Venohr, P. C. von der Ohe, N. Willby & D. Hering, 2020. Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nature Ecology and Evolution 4: 1060–1068. https://doi.org/10.1038/s41559-020-1216-4.

    Article  PubMed  Google Scholar 

  • Brejão, G. L., D. J. Hoeinghaus, M. A. Pérez-Mayorga, S. F. B. Ferraz & L. Casatti, 2018. Threshold responses of Amazonian stream fishes to timing and extent of deforestation. Conservation Biology 32: 860–871. https://doi.org/10.1111/cobi.13061.

    Article  PubMed  Google Scholar 

  • Brito, J. G., F. O. Roque, R. T. Martins, J. L. Nessimian, V. C. Oliveira, R. M. Hughes, F. R. de Paula, S. F. B. Ferraz & N. Hamada, 2020. Small forest losses degrade stream macroinvertebrate assemblages in the eastern Brazilian Amazon. Biological Conservation 241: 108263. https://doi.org/10.1016/j.biocon.2019.108263.

    Article  Google Scholar 

  • Brito, J. P., F. G. Carvalho & L. Juen, 2021. Response of the zygopteran community (Odonata: Insecta) to change in environmental integrity driven by urbanization in eastern Amazonian streams. Ecologies 2: 150–163. https://doi.org/10.3390/ecologies2010008.

    Article  Google Scholar 

  • Callisto, M., D. R. Macedo, M. S. Linares & R. M. Hughes, 2019. Multi-status and multi-spatial scale assessment of landscape effects on benthic macroinvertebrates in the Neotropical Savanna In Hughes, R. M., D. M. Infante, L. Wang, K. Chen & B. F. Terra (eds), Advances in Understanding Landscape Influences on Freshwater Habitats and Biological Assemblages. American Fisheries Society Symposium 90, Bethesda, MD: 275–302. https://doi.org/10.5281/zenodo.3519460.

  • Callisto, M., R. Mugnai, D. M. P. Castro & M. S. Linares, 2021. Sampling methods for aquatic insects In Santos, J. C., & G. W. Fernandes (eds), Measuring Arthropod biodiversity: A handbook of sampling methods. Springer New York, New York: 523–543. https://doi.org/10.1007/978-3-030-53226-0_20.

  • Calvão, L. B., L. Juen, J. M. B. de Oliveira Junior, J. D. Batista & P. De Marco Júnior, 2018. Land use modifies Odonata diversity in streams of the Brazilian Cerrado. Journal of Insect Conservation 22: 675–685. https://doi.org/10.1007/s10841-018-0093-5.

    Article  Google Scholar 

  • Cantanhêde, L. G., A. Luiza-Andrade, H. Leão & L. F. de A. Montag, 2021. How does conversion from forest to pasture affect the taxonomic and functional structure of the fish assemblages in Amazonian streams? Ecology of Freshwater Fish 30: 334–346. https://doi.org/10.1111/eff.12589.

    Article  Google Scholar 

  • Carvalho, A. L. & J. L. Nessimian, 1998. Odonata do estado do Rio de Janeiro, Brasil: hábitats e hábitos das larvas. Oecologia Brasiliensis 05: 3–28. https://doi.org/10.4257/oeco.1998.0501.01.

    Article  Google Scholar 

  • Carvalho, F. G., F. de Oliveira Roque, L. Barbosa, L. F. A. Montag & L. Juen, 2018. Oil palm plantation is not a suitable environment for most forest specialist species of Odonata in Amazonia. Animal Conservation 21: 526–533. https://doi.org/10.1111/acv.12427.

    Article  Google Scholar 

  • Carvalho, F. G., L. Duarte, G. Nakamura, G. D. S. Seger & L. Juen, 2021. Changes of phylogenetic and taxonomic diversity of Odonata (Insecta) in response to land use in Amazônia. Forests 12: 1061. https://doi.org/10.3390/f12081061.

    Article  Google Scholar 

  • Castro, D. M. P., S. Dolédec & M. Callisto, 2018. Land cover disturbance homogenizes aquatic insect functional structure in neotropical savanna streams. Ecological Indicators 84: 573–582. https://doi.org/10.1016/j.ecolind.2017.09.030.

    Article  Google Scholar 

  • Corbet, P. S., 1980. Biology of Odonata. Annual Review of Entomology 25: 189–217. https://doi.org/10.1146/annurev.en.25.010180.001201.

    Article  Google Scholar 

  • Costa, J. M., L. O. I. Souza & B. B. Oldrini, 2004. Chave para identificação das famílias e gêneros das larvas conhecidas de Odonata do Brasil: Comentários e registros bibliográficos (Insecta, Odonata). Publicações Avulsas Do Museu Nacional 99: 1–44.

    Google Scholar 

  • Dala-Corte, R. B., A. S. Melo, T. Siqueira, L. M. Bini, R. T. Martins, A. M. Cunico, A. M. Pes, A. L. B. Magalhães, B. S. Godoy, C. G. Leal, C. S. Monteiro-Júnior, C. Stenert, D. M. P. Castro, D. R. Macedo, D. P. Lima-Junior, É. A. Gubiani, F. C. Massariol, F. B. Teresa, F. G. Becker, F. N. Souza, F. Valente-Neto, F. L. Souza, F. F. Salles, G. L. Brejão, J. G. Brito, J. R. S. Vitule, J. Simião-Ferreira, K. Dias-Silva, L. Albuquerque, L. Juen, L. Maltchik, L. Casatti, L. Montag, M. E. Rodrigues, M. Callisto, M. A. M. Nogueira, M. R. Santos, N. Hamada, P. A. Z. Pamplin, P. S. Pompeu, R. P. Leitão, R. Ruaro, R. Mariano, S. R. M. Couceiro, V. Abilhoa, V. C. Oliveira, Y. Shimano, Y. Moretto, Y. R. Súarez & F. O. Roque, 2020. Thresholds of freshwater biodiversity in response to riparian vegetation loss in the Neotropical region. Journal of Applied Ecology 57: 1391–1402. https://doi.org/10.1111/1365-2664.13657.

    Article  Google Scholar 

  • Dalzochio, M. S., E. Périco, S. Renner & G. Sahlén, 2018. Effect of tree plantations on the functional composition of Odonata species in the highlands of southern Brazil. Hydrobiologia 808: 283–300. https://doi.org/10.1007/s10750-017-3431-9.

    Article  Google Scholar 

  • Dolný, A., P. Pyszko & H. Šigutová, 2021. Community changes in odonate monitoring: why are long‐term studies so relevant?. Insect Conservation and Diversity 14(5) 597-608 https://doi.org/10.1111/icad.12491

    Article  Google Scholar 

  • Dudgeon, D., 2010. Prospects for sustaining freshwater biodiversity in the 21st century: Linking ecosystem structure and function. Current Opinion in Environmental Sustainability 2: 422–430. https://doi.org/10.1016/j.cosust.2010.09.001.

    Article  Google Scholar 

  • Faghihinia, M., Y. Xu, D. Liu & N. Wu, 2021. Freshwater biodiversity at different habitats: Research hotspots with persistent and emerging themes. Ecological Indicators 129: 1–7. https://doi.org/10.1016/j.ecolind.2021.107926.

    Article  Google Scholar 

  • Firmiano, K. R., D. M. P. Castro, M. S. Linares & M. Callisto, 2021. Functional responses of aquatic invertebrates to anthropogenic stressors in riparian zones of Neotropical savanna streams. Science of the Total Environment 753: 141865. https://doi.org/10.1016/j.scitotenv.2020.141865.

    Article  CAS  PubMed  Google Scholar 

  • Giehl, N. F. S., L. S. Brasil, K. Dias-Silva, D. S. Nogueira & H. S. R. Cabette, 2019. Environmental thresholds of Nepomorpha in Cerrado streams, Brazilian Savannah. Neotropical Entomology 48: 186–196. https://doi.org/10.1007/s13744-018-0632-5.

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Tolosa, M., G. Rivera-Velázquez, T. M. Rioja-Paradela, L. F. Mendoza-Cuenca, C. Tejeda-Cruz & S. López, 2021. The use of Odonata species for environmental assessment: a meta-analysis for the Neotropical region. Environmental Science and Pollution Research 28: 1381–1396. https://doi.org/10.1007/s11356-020-11137-9.

    Article  PubMed  Google Scholar 

  • Gómez-Tolosa, M., E. González-Soriano, L. F. Mendoza-Cuenca, R. M. Pérez-Munguía, T. M. Rioja-Paradela, E. E. Espinoza-Medinilla, H. Ortega-Salas, G. Rivera-Velázquez, F. E. Penagos-García & S. López, 2022. The use of highly diverse clades as a surrogate for habitat integrity analysis: Argia damselflies as a practical tool for rapid assessments. Environmental Science and Pollution Research 29: 24334–24347. https://doi.org/10.1007/s11356-022-18815-w.

    Article  PubMed  Google Scholar 

  • Guterres, A. P. M., E. J. Cunha & L. Juen, 2021. Tolerant semiaquatic bugs species (Heteroptera: Gerromorpha) are associated to pasture and conventional logging in the Eastern Amazon. Journal of Insect Conservation 25: 555–567. https://doi.org/10.1007/s10841-021-00316-9.

    Article  Google Scholar 

  • Hering, D., A. Borja, J. Carstensen, L. Carvalho, M. Elliott, C. K. Feld, A. S. Heiskanen, R. K. Johnson, J. Moe, D. Pont, A. L. Solheim & W. van de Bund, 2010. The European Water Framework Directive at the age of 10: A critical review of the achievements with recommendations for the future. Science of the Total Environment 408: 4007–4019. https://doi.org/10.1016/j.scitotenv.2010.05.031.

    Article  CAS  PubMed  Google Scholar 

  • Herlihy, A. T., J. C. Sifneos, R. M. Hughes, D. V. Peck & R. M. Mitchell, 2020. The relation of lotic fish and benthic macroinvertebrate condition indices to environmental factors across the conterminous USA. Ecological Indicators 112: 105958. https://doi.org/10.1016/j.ecolind.2019.105958.

    Article  Google Scholar 

  • Higgins, J., J. Zablocki, A. Newsock, A. Krolopp, P. Tabas & M. Salama, 2021. Durable freshwater protection: A framework for establishing and maintaining long-term protection for freshwater ecosystems and the values they sustain. Sustainability 13: 1–17. https://doi.org/10.3390/su13041950.

    Article  Google Scholar 

  • Huggett, A. J., 2005. The concept and utility of ecological thresholds in biodiversity conservation. Biological Conservation 124: 301–310. https://doi.org/10.1016/j.biocon.2005.01.037.

    Article  Google Scholar 

  • Hughes, R. M., A. T. Herlihy, W. J. Gerth & Y. Pan, 2012. Estimating vertebrate benthic macroinvertebrate and diatom taxa richness in raftable Pacific Northwest rivers for bioassessment purposes. Environmental Monitoring and Assessment 184(5) 3185–3198. https://doi.org/10.1007/s10661-011-2181-9.

    Article  CAS  PubMed  Google Scholar 

  • Ishak, M., A. R. Norhisham, S. M. Thomas, S. Nurhidayu, A. Ghazali & B. Azhar, 2021. Physicochemical Properties as Driver of Odonata Diversity in Oil Palm Waterways. Frontiers in Forests and Global Change 4613064 https://doi.org/10.3389/ffgc.2021.613064

    Article  Google Scholar 

  • Jiménez-Valencia, J., P. R. Kaufmann, A. Sattamini, R. Mugnai, & D. F. Baptista, 2014. Assessing the ecological condition of streams in a southeastern Brazilian basin using a probabilistic monitoring design. Environmental Monitoring and Assessment 186(8) 4685–4695. https://doi.org/10.1007/s10661-014-3730-9

    Article  CAS  PubMed  Google Scholar 

  • Juen, L., J. M. B. de Oliveira-Junior, Y. Shimano, T. P. Mendes & H. S. R. Cabette, 2014. Composição e riqueza de Odonata (Insecta) em riachos com diferentes níveis de conservação em um ecótone Cerrado-Floresta Amazônica. Acta Amazonica 44: 223–233. https://doi.org/10.1590/S0044-59672014000200008.

    Article  Google Scholar 

  • Kaufmann, P. R., R. M. Hughes, S. G. Paulsen, D. V. Peck, C. Seeliger, T. Kincaid & R.M., Mitchell, 2022. Physical habitat in conterminous US streams and Rivers, part 2: A quantitative assessment of habitat condition. Ecological Indicators 141: 109047. https://doi.org/10.1016/j.ecolind.2022.109047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kincaid, T. M., 2009. User guide for probability survey design and analysis functions. U.S. Environmental Protection Agency, Washington, DC, https://archive.epa.gov/nheerl/arm/web/html/userguide.html.

  • King, R. S. & M. E. Baker, 2014. Use, Misuse, and limitations of Threshold Indicator Taxa Analysis (TITAN) for natural resource management Application of threshold concepts in natural resource decision making. Springer, New York. https://doi.org/10.1007/978-1-4899-8041-0.

    Article  Google Scholar 

  • Klein, C. E., N. S. Pinto, Z. A. V. Spigoloni, F. M. Bergamini, F. R. de Melo, P. De Marco & L. Juen, 2018. The influence of small hydroelectric power plants on the richness and composition of Odonata species in the Brazilian Savanna. International Journal of Odonatology 21: 33–44. https://doi.org/10.1080/13887890.2017.1419884.

    Article  Google Scholar 

  • Leal C. G., J. Barlow, T. A. Gardner, R. M. Hughes, R. P. Leitão , R. Mac Nally, P. R. Kaufmann, S. F. Ferraz, J. Zuanon, F. R. de Paula & J. Ferreira, 2018. Is environmental legislation conserving tropical stream faunas? A large-scale assessment of local riparian and catchment-scale influences on Amazonian fish. Journal of Applied Ecology 55(3): 1312–1326. https://doi.org/10.1111/1365-2664.13028.

    Article  PubMed  Google Scholar 

  • Lemm, J. U., M. Venohr, L. Globevnik, K. Stefanidis, Y. Panagopoulos, J. van Gils, L. Posthuma, P. Kristensen, C. K. Feld, J. Mahnkopf, D. Hering & S. Birk, 2021. Multiple stressors determine river ecological status at the European scale: Towards an integrated understanding of river status deterioration. Global Change Biology 27: 1962–1975. https://doi.org/10.1111/gcb.15504.

    Article  CAS  PubMed  Google Scholar 

  • Ligeiro, R., R. M. Hughes, P. R. Kaufmann, D. R. Macedo, K. R. Firmiano, W. R. Ferreira, D. Oliveira, A. S. Melo & M. Callisto, 2013. Defining quantitative stream disturbance gradients and the additive role of habitat variation to explain macroinvertebrate taxa richness. Ecological Indicators 25: 45–57. https://doi.org/10.1016/j.ecolind.2012.09.004.

    Article  Google Scholar 

  • Maasri, A., S. C. Jähnig, M. C. Adamescu, R. Adrian, C. Baigun, D. J. Baird, A. Batista-Morales, N. Bonada, L. E. Brown, Q. Cai, J. V. Campos-Silva, V. Clausnitzer, T. Contreras-MacBeath, S. J. Cooke, T. Datry, G. Delacámara, L. De Meester, K. B. Dijkstra, V. T. Do, S. Domisch, D. Dudgeon, T. Erös, H. Freitag, J. Freyhof, J. Friedrich, M. Friedrichs-Manthey, J. Geist, M. O. Gessner, P. Goethals, M. Gollock, C. Gordon, H. Grossart, G. Gulemvuga, P. E. Gutiérrez-Fonseca, P. Haase, D. Hering, H. J. Hahn, C. P. Hawkins, F. He, J. Heino, V. Hermoso, Z. Hogan, F. Hölker, J. M. Jeschke, M. Jiang, R. K. Johnson, G. Kalinkat, B. K. Karimov, A. Kasangaki, I. A. Kimirei, B. Kohlmann, M. Kuemmerlen, J. J. Kuiper, B. Kupilas, S. D. Langhans, R. Lansdown, F. Leese, F. S. Magbanua, S. S. Matsuzaki, M. T. Monaghan, L. Mumladze, J. Muzon, P. A. Mvogo Ndongo, J. C. Nejstgaard, O. Nikitina, C. Ochs, O. N. Odume, J. J. Opperman, H. Patricio, S. U. Pauls, R. Raghavan, A. Ramírez, B. Rashni, V. Ross-Gillespie, M. J. Samways, R. B. Schäfer, A. Schmidt-Kloiber, O. Seehausen, D. N. Shah, S. Sharma, J. Soininen, N. Sommerwerk, J. D. Stockwell, F. Suhling, R. D. Tachamo Shah, R. E. Tharme, J. H. Thorp, D. Tickner, K. Tockner, J. D. Tonkin, M. Valle, J. Vitule, M. Volk, D. Wang, C. Wolter & S. Worischka, 2021. A global agenda for advancing freshwater biodiversity research. Ecology Letters 25: 255–263. https://doi.org/10.1111/ele.13931.

    Article  PubMed  Google Scholar 

  • Macedo, D. R., R. M. Hughes, R. Ligeiro, W. R. Ferreira, M. A. Castro, N. T. Junqueira, D. R. Oliveira, K. R. Firmiano, P. R. Kaufmann, P. S. Pompeu & M. Callisto, 2014. The relative influence of catchment and site variables on fish and macroinvertebrate richness in Cerrado biome streams. Landscape Ecology 29: 1001–1016. https://doi.org/10.1007/s10980-014-0036-9.

    Article  Google Scholar 

  • Macedo, D. R., P. S. Pompeu, L. Morais, M. A. Castro, C. B. M. Alves, J. S. França, B. Sanches, J. Uchôa & M. Callisto, 2014b. Uso e ocupação do Solo, sorteio de sítios amostrais, reconhecimento em campo e realização de amostragens Condições ecológicas em bacias hidrográficas de empreendimentos hidrelétricos. Companhia Energética de Minas Gerais, Belo Horizonte: 47–68.

  • Manu M. K., G. Ashiagbor, I. Seidu, T. Groen, T. Gyimah & B. Toxopeus, 2022. Odonata as bioindicator for monitoring anthropogenic disturbance of Owabi wetland sanctuary Ghana. Aquatic Insects 1–9. https://doi.org/10.1080/01650424.2022.2108844.

  • Martins, I., R. Ligeiro, R. M. Hughes, D. R. Macedo & M. Callisto, 2018. Regionalisation is key to establishing reference conditions for neotropical savanna streams. Marine and Freshwater Research 69: 82–94. https://doi.org/10.1071/MF16381.

    Article  Google Scholar 

  • Martins, R. T., J. Brito, K. Dias-Silva, C. G. Leal, R. P. Leitão, V. C. Oliveira, J. M. B. Oliveira-Júnior, S. F. B. Ferraz, F. R. de Paula, F. O. Roque, N. Hamada, L. Juen, J. L. Nessimian, P. S. Pompeu & R. M. Hughes, 2021. Low forest-loss thresholds threaten Amazonian fish and macroinvertebrate assemblage integrity. Ecological Indicators 127: 107773. https://doi.org/10.1016/j.ecolind.2021.107773.

    Article  Google Scholar 

  • Mendes, T. P., H. S. R. Cabette & L. Juen, 2015. Setting boundaries: Environmental and spatial effects on Odonata larvae distribution (Insecta). Anais Da Academia Brasileira De Ciências 87: 239–248. https://doi.org/10.1590/0001-3765201520130477.

    Article  PubMed  Google Scholar 

  • Mendes, T. P., J. M. B. Oliveira-Junior, H. S. R. Cabette, J. D. Batista & L. Juen, 2017. Congruence and the biomonitoring of aquatic ecosystems: Are odonate larvae or adults the most effective for the evaluation of impacts. Neotropical Entomology 46: 631–641. https://doi.org/10.1007/s13744-017-0503-5.

    Article  CAS  PubMed  Google Scholar 

  • Mendes, T. P., A. Luiza-Andrade, H. S. R. Cabette & L. Juen, 2018. How does environmental variation affect the distribution of dragonfly larvae (Odonata) in the Amazon-Cerrado transition zone in Central Brazil? Neotropical Entomology 47: 37–45. https://doi.org/10.1007/s13744-017-0506-2.

    Article  CAS  PubMed  Google Scholar 

  • Mendes, T. P., N. L. Benone & L. Juen, 2019. To what extent can oil palm plantations in the Amazon support assemblages of Odonata larvae? Insect Conservation and Diversity 12: 448–458. https://doi.org/10.1111/icad.12357.

    Article  Google Scholar 

  • Mendes, T. P., L. L. Amado, R. A. B. Ribeiro & L. Juen, 2020. Morphological diversity of Odonata larvae (Insecta) and abiotic variables in oil palm plantation areas in the Eastern Amazon. Hydrobiologia 847: 161–175. https://doi.org/10.1007/s10750-019-04079-y.

    Article  Google Scholar 

  • Mendes, T. P., L. F. A. Montag, S. T. Alvarado & L. Juen, 2021. Assessing habitat quality on alpha and beta diversity of Odonata larvae (Insect) in logging areas in Amazon forest. Hydrobiologia 848: 1147–1161. https://doi.org/10.1007/s10750-021-04524-x.

    Article  Google Scholar 

  • Mendoza-Penagos, C. C., L. B. Calvão & L. Juen, 2021. A new biomonitoring method using taxonomic families as substitutes for the suborders of the Odonata (Insecta) in Amazonian streams. Ecological Indicators 124: 107388. https://doi.org/10.1016/j.ecolind.2021.107388.

    Article  Google Scholar 

  • Miguel, T. B., J. M. B. Oliveira-Junior, R. Ligeiro & L. Juen, 2017. Odonata (Insecta) as a tool for the biomonitoring of environmental quality. Ecological Indicators Elsevier 81: 555–566. https://doi.org/10.1016/j.ecolind.2017.06.010.

    Article  CAS  Google Scholar 

  • Monteiro Júnior, C. D. S., L. Juen & N. Hamada, 2015. Analysis of urban impacts on aquatic habitats in the central Amazon basin: Adult odonates as bioindicators of environmental quality. Ecological Indicators 48: 303–311. https://doi.org/10.1016/j.ecolind.2014.08.021.

    Article  Google Scholar 

  • Neiss, U. G. & N. Hamada, 2014. Ordem Odonata In Hamada, N., J. L. Nessimian, & R. B. Querino (eds), Insetos aquáticos na Amazônia brasileira: taxonomia, biologia e ecologia. Instituto Nacional de Pesquisas da Amazônia, Manaus: 217–282.

  • Oliveira, P. C. R., H. G. van der Geest, M. H. S. Kraak, J. J. Westveer, R. C. M. Verdonschot & P. F. M. Verdonschot, 2020. Over forty years of lowland stream restoration: Lessons learned? Journal of Environmental Management 264: 110417. https://doi.org/10.1016/j.jenvman.2020.110417.

    Article  Google Scholar 

  • Oliveira-Junior, J. M. B. & L. Juen, 2019. The Zygoptera/Anisoptera ratio (Insecta: Odonata): A new tool for habitat alterations assessment in amazonian streams. Neotropical Entomology 48: 552–560. https://doi.org/10.1007/s13744-019-00672-x.

    Article  CAS  PubMed  Google Scholar 

  • Paulson, D., 2006. The importance of forests to neotropical dragonflies. Forest and Dragonflies. Fourth WDA International Symposium of Odonatology Pontevedra Spain: 79–101.

  • Peck, D. V., A. T. Herlihy, B. H. Hill, R. M. Hughes, P. R. Kaufmann, D. J. Klemm, J. M. Lazorchak, F. H. McCormick, S. A. Peterson, P. L. Ringold, T. Magee & M. R. Cappaert, 2006. Environmental monitoring and assessment program-surface waters western pilot study: Field operations manual for wadeable streams. EPA/620/R-06/003. USEPA, Washington, D.C.

  • Pereira-Moura, L., W. S. de Sena, U. G. Neiss & S. R. M. Couceiro, 2021. Environmental integrity as a modeler of the composition of the Odonata community. Environmental Monitoring and Assessment 193: 1–13. https://doi.org/10.1007/s10661-021-08957-8.

    Article  Google Scholar 

  • Pessacq, P., J. Múzon & U. G. Neiss, 2018. Order Odonata In Hamada, N., J. H. Thorp, & D. c. Rogers (eds), Ecology and general biology: Thorp and Covich’s freshwater invertebrates. London: 355–494.

  • Pires, M. M., N. F. D. Müller, C. Stenert & L. Maltchik, 2020. Influence of different riparian vegetation widths and substrate types on the communities of larval Odonata (Insecta) in southern brazilian streams. Acta Limnologica Brasiliensia 32: 1–16. https://doi.org/10.1590/s2179-975x2520.

    Article  Google Scholar 

  • Pires, M. M., A. E. Siegloch, M. I. M. Hernández & M. M. Petrucio, 2020. Environmental drivers and composition of assemblages of immature odonates (Insecta) in a subtropical island in southern Brazil. Acta Limnologica Brasiliensia 32: e2. https://doi.org/10.1590/s2179-975x8017.

    Article  Google Scholar 

  • Pires, M. M., G. Sahlén & E. Périco, 2021. Agricultural land use affects the heterogeneity of Odonata communities in the Brazilian Pampa. Journal of Insect Conservation 26: 503–514. https://doi.org/10.1007/s10841-021-00349-0.

    Article  Google Scholar 

  • Pompeu, P. S., D. R. de Carvalho, C. G. Leal, R. P. Leitão, C. B. M. Alves, D. F. Braga, M. A. Castro, N. T. Junqueira & R. M. Hughes, 2021. Sampling efforts for determining fish species richness in megadiverse tropical regions. Environmental Biology of Fishes 104: 1487–1499. https://doi.org/10.1007/s10641-021-01184-7.

    Article  Google Scholar 

  • Powney, G. D., S. S. A. Cham, D. Smallshire & N. J. B. Isaac, 2015. Trait correlates of distribution trends in the Odonata of Britain and Ireland. PeerJ 3: e1410. https://doi.org/10.7717/peerj.1410.

    Article  PubMed  PubMed Central  Google Scholar 

  • R Core Development Team, 2016. R: A Language and Environment for Statistical Computing, 3.3.1.

  • Reid, A. J., A. K. Carlson, I. F. Creed, E. J. Eliason, P. A. Gell, P. T. J. Johnson, K. A. Kidd, T. J. MacCormack, J. D. Olden, S. J. Ormerod, J. P. Smol, W. W. Taylor, K. Tockner, J. C. Vermaire, D. Dudgeon & S. J. Cooke, 2019. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews 94: 849–873. https://doi.org/10.1111/brv.12480.

    Article  PubMed  Google Scholar 

  • Resende, B. O., V. R. S. Ferreira, L. S. Brasil, L. B. Calvão, T. P. Mendes, F. G. de Carvalho, C. C. Mendoza-Penagos, R. C. Bastos, J. S. Brito, J. M. B. Oliveira-Junior, K. Dias-Silva, A. Luiza-Andrade, R. Guillermo, A. Cordero-Rivera & L. Juen, 2021. Impact of environmental changes on the behavioral diversity of the Odonata (Insecta) in the Amazon. Scientific Reports 11: 1–12. https://doi.org/10.1038/s41598-021-88999-7.

    Article  CAS  Google Scholar 

  • Ribeiro, R. A. B., L. Juen & L. S. Brasil, 2022. Habitat conditions in streams influence Odonata larval assemblages in the eastern Amazon. International Journal of Odonatology 25: 22–30. https://doi.org/10.48156/1388.2022.1917160.

  • Rodrigues, M. E., F. de Oliveira Roque, J. M. O. Quintero, J. C. de Castro Pena, D. C. de Sousa & P. De Marco Junior, 2016. Nonlinear responses in damselfly community along a gradient of habitat loss in a savanna landscape. Biological Conservation 194: 113–120. https://doi.org/10.1016/j.biocon.2015.12.001.

    Article  Google Scholar 

  • Schinegger, R., M. Palt, P. Segurado & S. Schmutz, 2016. Untangling the effects of multiple human stressors and their impacts on fish assemblages in European running waters. Science of the Total Environment 573: 1079–1088. https://doi.org/10.1016/j.scitotenv.2016.08.143.

    Article  CAS  PubMed  Google Scholar 

  • Sganzerla, C., M. S. Dalzochio, G. D. S. Prass & E. Périco, 2021. Effects of urbanization on the fauna of Odonata on the coast of southern Brazil. Biota Neotropica 21: 1–10. https://doi.org/10.1590/1676-0611-bn-2020-1122.

    Article  Google Scholar 

  • Šigutová, H., J. Šipoš, A. Dolný, 2019. A novel approach involving the use of Odonata as indicators of tropical forest degradation: When family matters. Ecological Indicators 104:229–236. https://doi.org/10.1016/j.ecolind.2019.05.001

    Article  Google Scholar 

  • Silva, D. R. O., R. Ligeiro, R. M. Hughes & M. Callisto, 2014. Visually determined stream mesohabitats influence benthic macroinvertebrate assessments in headwater streams. Environmental Monitoring and Assessment 186: 5479–5488. https://doi.org/10.1007/s10661-014-3797-3.

    Article  CAS  PubMed  Google Scholar 

  • Silva, D. R. O., A. T. Herlihy, R. M. Hughes & M. Callisto, 2017. An improved macroinvertebrate multimetric index for the assessment of wadeable streams in the neotropical savanna. Ecological Indicators 81: 514–525. https://doi.org/10.1016/j.ecolind.2017.06.017.

    Article  Google Scholar 

  • Silva, L. F. R., D. M. P. Castro, L. Juen, M. Callisto, R. M. Hughes & M. G. Hermes, 2021. Functional responses of Odonata larvae to human disturbances in neotropical savanna headwater streams. Ecological Indicators 133: 108367. https://doi.org/10.1016/j.ecolind.2021.108367.

    Article  Google Scholar 

  • Silva, L. F. R., D. M. P. Castro, L. Juen, M. Callisto, R. M. Hughes & M. G. Hermes, 2021. A matter of suborder: are Zygoptera and Anisoptera larvae influenced by riparian vegetation in Neotropical Savanna streams? Hydrobiologia 848: 4433–4443. https://doi.org/10.1007/s10750-021-04642-6.

    Article  Google Scholar 

  • Standring, S., M. Sánchez-Herrera, R. Guillermo-Ferreira, J. L. Ware, Y. M. Vega-Sánchez, R. Clement, J. P. Drury, G. F. Grether, A. González-Rodríguez, L. Mendoza-Cuenca, C. A. Bota-Sierra, 2022. Evolution and Biogeographic History of Rubyspot Damselflies (Hetaerininae: Calopterygidae: Odonata). Diversity 14(9): 757. https://doi.org/10.3390/d14090757

    Article  CAS  Google Scholar 

  • Stevens, D. L. & A. R. Olsen, 2004. Spatially balanced sampling of natural resources. Journal of the American Statistical Association 99: 262–278. https://doi.org/10.1198/016214504000000250.

    Article  Google Scholar 

  • Strahler, A., 1957. Quantitative analysis of watershed geomorphology. Transactions, American Geophysical Union 38: 913–920.

    Article  Google Scholar 

  • Valente-Neto, F., F. De Oliveira Roque, M. E. Rodrigues, L. Juen & C. M. Swan, 2016. Toward a practical use of neotropical odonates as bioindicators: Testing congruence across taxonomic resolution and life stages. Ecological Indicators 61: 952–959. https://doi.org/10.1016/j.ecolind.2015.10.052.

    Article  Google Scholar 

  • Valente-Neto, F., B. T. Martínez, R. M. Hughes, A. Ferreira, F. Severo-Neto, F. L. de Souza, R. P. Souza, S. C. Escarpinati & F. de O. Roque, 2021. Incorporating costs, thresholds and spatial extents for selecting stream bioindicators in an ecotone between two Brazilian biodiversity hotspots. Ecological Indicators 127: 107761. https://doi.org/10.1016/j.ecolind.2021.107761.

    Article  Google Scholar 

  • Vilela, D. S., R. Guillermo-Ferreira, K. Del-Claro & A. Cordero-Rivera, 2018. Argia angelae (Odonata: Zygoptera: Coenagrionidae) sp. nov. from Chapada dos Guimarães, Mato Grosso, Brazil. Zootaxa 4415: 549–560. https://doi.org/10.11646/zootaxa.4415.3.8.

Download references

Acknowledgements

We are grateful for continued funding by Programa Peixe Vivo of the Companhia Energética de Minas Gerais (P&D Aneel-Cemig GT-487, and GT-599), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the Ph.D. scholarship to LS. LJ, MC and MGH were awarded National Council for Scientific & Technological Development (CNPq) research productivity grants 304710/2019-9, 304060/2020-8, and 306882/2021-3, respectively. RMH received a Fulbright Brazil grant and CNPq 450711/2016-1 funding. DMPC received a postdoctoral scholarship from P&D Aneel- Cemig GT-611, and MC received a grant (PPM 00104-18) from the Fundação de Amparo à Pesquisa do Estado de Minas Gerais. Carlos B. M. Alves provided logistical support, and Ulisses Neiss supported specimen identification. Colleagues from the Universidade Federal de Minas Gerais (UFMG), Universidade Federal de Lavras (UFLA), Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), and Pontifícia Universidade Católica de Minas Gerais (PUC-MINAS) helped with field sampling. Several colleagues from the Laboratório de Ecologia de Bentos ICB/UFMG helped with sample processing.

Funding

Companhia Energética de Minas Gerais (P&D Aneel-Cemig GT-487, GT-599, and  GT-611, Conselho Nacional de Desenvolvimento Científico e Tecnológico, Fullbright Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego M. P. Castro.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Luiz Ubiratan Hepp, Frank Onderi Masese & Franco Teixeira de Mello / Stream Ecology and Environmental Gradients

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, L.F.R., Castro, D.M.P., Juen, L. et al. Ecological thresholds of Odonata larvae to anthropogenic disturbances in neotropical savanna headwater streams. Hydrobiologia 851, 313–326 (2024). https://doi.org/10.1007/s10750-022-05097-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-05097-z

Keywords

Navigation