Skip to main content

Advertisement

Log in

How Does Environmental Variation Affect the Distribution of Dragonfly Larvae (Odonata) in the Amazon-Cerrado Transition Zone in Central Brazil?

  • Ecology, Behavior and Bionomics
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

Abstract

This study investigated the effects of environmental variation on assemblages of dragonfly larvae (Odonata). We hypothesize that there is a significant correlation between species richness, species composition, and abundance of Odonata individuals, and habitat integrity and abiotic variables. To test this hypothesis, we sampled odonate larvae at 12 streams in the Suiá-Miçú River basin in Mato Grosso, Brazil, during three different periods of the year. Local physical and chemical variables (temperature, pH, turbidity, electrical conductivity (EC), dissolved oxygen (DO), total dissolved solids (TDS), and oxidation reduction potential (ORP)) were measured at each site using a multi-parameter probe, and integrity was assessed using the Habitat Integrity Index (HII). The variation in richness, abundance, and composition of Odonata species was related to the environmental variables analyzed, primarily by the abiotic factors pH, electrical conductivity, dissolved oxygen, total dissolved solids, and oxidation reduction potential. Our hypothesis was corroborated for the suborder Anisoptera, which showed a significant relationship with these variables, whereas Zygoptera was only related to pH. Our results show the importance of physical and chemical conditions in ecological studies using Odonata larvae as tools for the management and conservation of freshwater ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2

Similar content being viewed by others

References

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  • Callisto M, Moretti M, Goulart M (2001) Macroinvertebrados bentônicos como ferramenta para avaliar a saúde de riachos. Rev Bras Recur Hidr 6:71–82 Retrieved from https://www.academia.edu/

    Google Scholar 

  • Calvão LB, Nogueira DS, de Assis Montag LF, Lopes MA, Juen L (2016) Are Odonata communities impacted by conventional or reduced impact logging? For Ecol Manag 382:143–150

    Article  Google Scholar 

  • Carvalho AL, Nessimian JL (1998) Odonata do Estado do Rio de Janeiro, Brasil: Habitats e Hábitos das larvas. Oecol Bras 5:3–28 Retrieved from https://dialnet.unirioja.es/

    Article  Google Scholar 

  • Carvalho FGD, Pinto NS, Oliveira Júnior JMB, Juen L (2013) Effects of marginal vegetation removal on Odonata communities. Acta Limnol Bras 25:10–18

    Article  Google Scholar 

  • Chase JM, Leibold MA (2003) Ecological niches: linking classical and contemporary approaches. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310 Retrieved from http://www.jstor.org/stable/1745369

    Article  CAS  PubMed  Google Scholar 

  • Corbet PS (1999) Dragonflies: behavior and ecology of Odonata. Harley Books, Colchester, 829 p

    Google Scholar 

  • Corkum LD, Ciborowski JJ, Poulin RG (1997) Effects of emergence date and maternal size on egg development and sizes of eggs and first-instar nymphs of a semelparous aquatic insect. Oecologia 111:69–75

    Article  PubMed  Google Scholar 

  • Cortezzi SS, Bispo PC, Paciencia GP, Leite RC (2009) Influência da ação antrópica sobre a fauna de macroinvertebrados aquáticos em riachos de uma região de cerrado do sudoeste do Estado de São Paulo. Iheringia 99:36–43

    Article  Google Scholar 

  • De Marco JP, Batista JD, Cabette HSR (2015) Community assembly of adult odonates in tropical streams: an ecophysiological hypothesis. PLoS One 10:1–17

    Article  Google Scholar 

  • Dodds WK, López AJ, Bowden WB, Gregory S, Grimm NB et al (2002) N uptake as a function of concentration in streams. J N Am Benthol Soc 21:206–220

    Article  Google Scholar 

  • Ferreira-Peruquetti P, De Marco JP (2002) Efeito da alteração ambiental sobre comunidades de Odonata em riachos de Mata Atlântica de Minas Gerais, Brasil. Rev Brasi Zool 19:317–327

    Article  Google Scholar 

  • Franco GMS, Takeda AM (2002) Spatial and temporal variation of Odonata larvae associated with macrophytes in two floodplain lakes from the upper Paraná River, Brazil. Acta Sci 24:345–351 Retrieved from http://periodicos.uem.br/ojs/index.php

    Google Scholar 

  • Frissell CA, Liss WJ, Warren CE, Hurley MD (1986) A hierarchical framework for stream habitat classification: viewing streams in a watershed context. Environ Manag 10:199–214

    Article  Google Scholar 

  • Fulan JÂ, Henry R (2007) Distribuição temporal de imaturos de Odonata (Insecta) associados a Eichhornia azurea (Kunth) na lagoa do Camargo, Rio Paranapanema, São Paulo. Rev Bras Entomol 51:224–227

    Article  Google Scholar 

  • Gorham CT, Vodopich DS (1992) Effects of acidic pH on predation rates and survivorship of damselfly nymphs. Hydrobiol 242:51–62

    Article  CAS  Google Scholar 

  • Harrison JF (2001) Insect acid-base physiology. Annu Rev Entomol 46:221–250

    Article  CAS  PubMed  Google Scholar 

  • Heckman CW (2006) Encyclopedia of South American aquatic insects: Odonata-Anisoptera: illustrated keys to known families, genera, and species in South America. Springer Science & Business Media, Berlin

    Google Scholar 

  • Heino J (2010) Are indicator groups and cross-taxon congruence useful for predicting biodiversity in aquatic ecosystems? Ecol Indic 10:112–117 In: Lindenmayer D, Barton P, & Pierson J (Eds) (2015) Indicators and Surrogates of Biodiversity and Environmental Change. CSIRO PUBLISHING

    Article  Google Scholar 

  • Hutchinson GE (1957) The multivariate niche. Cold Spring Harb Symp Quant Biol 22:415–421

    Article  Google Scholar 

  • INSTITUTO SOCIOAMBIENTAL - ISA (2014) <http://pib.socioambiental.org/pt> Acessado em 10 de dezembro de

  • Jackson DA (1993) Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74:2204–2214. doi:10.2307/1939574

    Article  Google Scholar 

  • Jackson DA, Peres-Neto PR, Olden JD (2001) What controls who is where in freshwater fish communities the roles of biotic, abiotic, and spatial factors. Can J Fish Aquat Sci 58:157–170 In: Lindenmayer D, Barton P, Pierson J (eds) (2015) Indicators and Surrogates of Biodiversity and Environmental Change. CSIRO PUBLISHING

    Google Scholar 

  • Johansson F, Stoks R, Rowe L, De Block M (2001) Life history plasticity in a damselfly: effects of combined time and biotic constraints. Ecology 82:1857–1869

    Article  Google Scholar 

  • Juen L, De Marco JP (2011) Odonate biodiversity in terra-firme forest streamlets in Central Amazonia: on the relative effects of neutral and niche drivers at small geographical extents. Insect Conserv Diver 4:265–274

    Article  Google Scholar 

  • Juen L, Oliveira-Júnior JMB, Shimano Y, Mendes TP, Cabette HSR (2014) Composição e riqueza de Odonata (insecta) no ecótone Cerrado-Floresta Amazônica em riachos com diferentes níveis de conservação. Acta Amazon 44:175–184

    Article  Google Scholar 

  • Juen L, Cunha EJ, Carvalho FG, Ferreira MC, Begot TO, Andrade AL, …, Montag LFA (2016) Effects of Oil Palm Plantations on the Habitat Structure and Biota of Streams in Eastern Amazon. River Res Appl. doi:10.1002/rra.3050

  • Junk WJ, Wantzen KM (2004) The flood pulse concept: new aspects, approaches, and applications—an update. In: Welcomme R, Petr T (eds) Proceedings of the 2nd Large River Symposium (LARS), Pnom Penh, Cambodia. RAP Publication, Bangkok, pp 117–149

    Google Scholar 

  • Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river – floodplain systems. Canadian Fishery Aquatic Science. In: Dodge DP (ed) Proceedings of the international large river symposium. Can Spec Publ Fish Aquat Sci 106:110–127

  • Kaller MD, Kelso WE (2007) Association of macroinvertebrate assemblages with dissolved oxygen concentration and wood surface area in selected subtropical streams of the South-Eastern USA. Aquat Ecol 41:95–110. doi:10.1007/s10452-006-9046-2

    Article  CAS  Google Scholar 

  • Karr JR, Dudley DR (1981) Ecological perspective on water quality goals. Environ Manag 5:55–68

    Article  Google Scholar 

  • Kefford BJ (1998) The relationship between electrical conductivity and selected macroinvertebrate communities in four river systems of south-west Victoria, Australia. Int J Salt Lake Res 7:153–170

    Google Scholar 

  • Kemp M, De Kock KN, Wepener V, Roets W, Quinn L, Wolmarans CT (2014) Influence of selected abiotic factors on aquatic macroinvertebrate assemblages in the Olifants River catchment, Mpumalanga, South Africa. Afr J Aquat Sci 39:141–149

    Article  Google Scholar 

  • Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, …, Loreau M (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613. In: Lindenmayer D, Barton P & Pierson J (Eds) (2015) Indicators and Surrogates of Biodiversity and Environmental Change. CSIRO PUBLISHING

  • Martins RT, Stephan NNC, Alves RG (2008) Tubificidae (Annelida: Oligochaeta) as an indicator of water quality in an urban stream in southeast Brazil. Acta Limnol Bras 20:221–226

    Google Scholar 

  • May ML (1976) Thermoregulation and adaptation to temperature in dragonflies (Odonata: Anisoptera). Ecol Monogr 46:1–32

    Article  Google Scholar 

  • Mcardle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82:290–297

    Article  Google Scholar 

  • McPeek MA (2008) Ecological factors limiting the distributions and abundances of Odonata. In: Córdoba-Aguilar A (ed) Dragonflies and damselflies: model organisms for ecological and evolutionary research. Oxford University Press, Oxford, p 51

    Chapter  Google Scholar 

  • Mendes TP, Cabette HSR, Juen L (2015) Setting boundaries: environmental and spatial effects on Odonata larvae distribution (Insecta). An Acad Bras Cienc 87:239–248

    Article  PubMed  Google Scholar 

  • Monteiro-Jr CS, Couceiro SRM, Hamada N, Juen L (2013) Effect of vegetation removal for road building on richness and composition of Odonata communities in Amazonia. Brazil Int J Odonatol 16:135–144

    Article  Google Scholar 

  • Monteiro-Jr CS, Juen L, Hamada N (2015) Analysis of urban impacts on aquatic habitats in the Central Amazon basin: adult odonates as bioindicators of environmental quality. Ecol Indic 48:303–311

    Article  Google Scholar 

  • Moulton TP (1998) Saúde e integridade do ecossistema e o papel dos insetos aquáticos. In: Nessimian JL, Carvalho AL (eds) Ecologia de Insetos Aquáticos. Oecol Bras, Rio de Janeiro, pp 281–298

    Google Scholar 

  • Neiss UG, Hamada N (2014) Ordem Odonata. In: Insetos aquáticos na Amazônia brasileira: taxonomia, biologia e ecologia. (orgs) Hamada N, Nessimian JL, Querino RB. Embrapa Meio-Norte-Livros científicos

  • Nessimian JL, Venticinque EM, Zuanon J, De Marco JP, Gordo M, Fidelis L, Batista JD, Juen L (2008) Land use, habitat integrity, and aquatic insect assemblages in Central Amazonian streams. Hydrobiol 614:117–131

    Article  Google Scholar 

  • Oertli B (2008) The use of dragonflies in the assessment and monitoring of aquatic habitats. In: Cordoba-Aguilar A (ed) Model organisms for ecological and evolutionary research. Oxford University Press, Oxford, pp 79–95

    Google Scholar 

  • Oliveira-Júnior JMB, Cabette HSR, Pinto NS, Juen L (2013) As variações na comunidade de Odonata (Insecta) em córregos podem ser preditas pelo Paradoxo do Plâncton? Explicando a riqueza de espécies pela variabilidade ambiental. Entomo Brasilis 6:1–8

    Article  Google Scholar 

  • Oliveira-Júnior JMB, Shimano Y, Gardner TA, Hughes RM, De Marco JP, Juen L (2015) Neotropical dragonflies (Insecta: Odonata) as indicators of ecological condition of small streams in the eastern Amazon. Austral Ecol 40:733–744

    Article  Google Scholar 

  • Padial AA, Declerck SA, De Meester L, Bonecker CC, Lansac-Tôha FA, Rodrigues LC, …, Bini LM (2012) Evidence against the use of surrogates for biomonitoring of Neotropical floodplains. Freshw Biol 57:2411–2423. In: Lindenmayer D, Barton P, Pierson J (Eds) (2015) Indicators and Surrogates of Biodiversity and Environmental Change. CSIRO PUBLISHING

  • Pereira LR, Cabette HSR, Juen L (2012) Trichoptera as bioindicators of habitat integrity in the Pindaíba river basin, Mato Grosso (Central Brazil). Ann Limnol Int J Limnol 48:295–302

    Article  Google Scholar 

  • Pianka ER (1994) Evolutionary ecology. Harper Collins College Publishers, New York

    Google Scholar 

  • Pinto NS, Neto JH, Ribeiro V, Rodrigues AR, Brandão BR, Rocha CO (2013) Efeito da Presença de Vizinhos sobre o Comportamento Territorial de Perithemis mooma (Kirby) (Anisoptera: Libellulidae). Entomo Brasilis 6:104–107

    Article  Google Scholar 

  • Poff NL (1997) Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. J N Am Benthol Soc 391–409

  • Poff NL, Allan JD (1995) Functional organization of stream fish assemblages in relation to hydrological variability. Ecology 76:606–627

    Article  Google Scholar 

  • Poff NL, Olden JD, Vieira NK, Finn DS, Simmons MP, Kondratieff BC (2006) Functional trait niches of North American lotic insects: traits-based ecological applications in light of phylogenetic relationships. J N Am Benthol Soc 25:730–755

    Article  Google Scholar 

  • Pulliam HR (1996) Sources and sinks: empirical evidence and population consequences. In: Rhodes OE, Chesser RK, Smith MH (eds) Population dynamics in space and time. University of Chicago Press, Chicago, pp 45–70

    Google Scholar 

  • R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

  • Ratter JA, Askew GP, Montgomery RF, Gifford DR (1978) Observations on the vegetation of northeastern Mato Grosso II. Forest and soils of the Rio Suiá-Miçú area. Roy Soc London S B Biol Sci 203:191–208

    Article  CAS  Google Scholar 

  • Reed KE, Bidner LR (2004) Primate communities: past, present, and possible future. Am J Phys Anthropol 125:2–39

    Article  Google Scholar 

  • Schlichting CD, Pigliucci M (1999) Phenotypic evolution: a reaction norm perspective. Sinauer Associates Incorporated

  • Shimano Y, Juen L, Salles FF, Nogueira DS, Cabette HSR (2013) Environmental and spatial processes determining Ephemeroptera (Insecta) structures in tropical streams. Ann Limnol-Inter J Limnol 49:31–41

    Article  Google Scholar 

  • Southwood TRE (1977) Habitat, the templet for ecological strategies? J Anim Ecol 46:337–365

    Article  Google Scholar 

  • Stone L, Roberts A (1990) The checkerboard score and species distributions. Oecologia 85:74–79

    Article  PubMed  Google Scholar 

  • Suhonen J, Suutari E, Kaunisto KM, Krams I (2013) Patch area of macrophyte Stratioites aloides as a critical resource for declining dragonfly Aeshna Viridis. J Insect Conserv 17:393–398

    Google Scholar 

  • Tate CM, Heiny JS (1995) The ordination of benthic invertebrate communities in the South Platte River Basin in relation to environmental factors. Freshw Biol 33:439–454

    Article  Google Scholar 

  • Ward JV (1992) Aquatic insect ecology, Ecology and habitat. John Wiley & Sons, Inc, New York

    Google Scholar 

  • Zaiha AN, Ismid MM, Azri MS (2015) Effects of logging activities on ecological water quality indicators in the Berasau River, Johor, Malaysia. Environ Monit Assess 187:1–9

    Article  Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Prentice-Hall, Upper Saddle River, New Jersey, p 633

Download references

Acknowledgments

We thank the UNEMAT Entomology Laboratory (Laboratório de Entomologia) at Nova Xavantina and its staff for their help in field. R also thanks CNPq for funding (proc. no. 520268/2005-9); FAPEMAT for the Scientific Initiation scholarship granted to Thiago Pereira Mendes, enabling him to dedicate his time to this project; and partners EMBRAPA, ISA, and NGOs, involved in the Y Ikatu Xingu Campaign, which motivated this project. Finally, we are grateful to PROPESP/UFPA and FADESP for supporting this publication, to the Federal University of Pará (University Federal do Pará—UFPA), and Graduate Program in Fisheries and Aquatic Ecology (Programa de Pós-Graduation em Ecologia Aquática and Pesca—PPGEAP) for the masters scholarship. Leandro Juen acknowledges the ongoing support of CNPq productivity grants (process, 303252/2013-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T P Mendes.

Additional information

Edited by Fernando B Noll – UNESP

Electronic Supplementary Material

ESM 1

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendes, T.P., Luiza-Andrade, A., Cabette, H.S.R. et al. How Does Environmental Variation Affect the Distribution of Dragonfly Larvae (Odonata) in the Amazon-Cerrado Transition Zone in Central Brazil?. Neotrop Entomol 47, 37–45 (2018). https://doi.org/10.1007/s13744-017-0506-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-017-0506-2

Keywords

Navigation