Skip to main content

Advertisement

Log in

The relative influence of catchment and site variables on fish and macroinvertebrate richness in cerrado biome streams

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Landscape and site-scale data analyses aid the interpretation of biological data and thereby help us develop more cost-effective natural resource management strategies. Our study focused on environmental influences on stream assemblages and we evaluated how three classes of environmental variables (geophysical landscape, land use and cover, and site habitat), influence fish and macroinvertebrate assemblage richness in the Brazilian Cerrado biome. We analyzed our data through use of multiple linear regression (MLR) models using the three classes of predictor variables alone and in combination. The four MLR models explained dissimilar amounts of benthic macroinvertebrate taxa richness (geophysical landscape R 2 ≈ 35 %, land use and cover R 2 ≈ 28 %, site habitat R 2 ≈ 36 %, and combined R 2 ≈ 51 %). For fish assemblages, geophysical landscape, land use and cover, site habitat, and combined models explained R 2 ≈ 28 %, R 2 ≈ 10 %, R 2 ≈ 31 %, and R 2 ≈ 47 % of the variability in fish species richness, respectively. We conclude that (1) environmental variables differed in the degree to which they explain assemblage richness, (2) the amounts of variance in assemblage richness explained by geophysical landscape and site habitat were similar, (3) the variables explained more variability in macroinvertebrate taxa richness than in fish species richness, and (4) all three classes of environmental variables studied were useful for explaining assemblage richness in Cerrado headwater streams. These results help us to understand the drivers of assemblage patterns at regional scales in tropical areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allan JD (2004) Landscapes and riverscapes: the influence of land use on stream ecosystems. Annu Rev Ecol Evol Syst 35:257–284

    Article  Google Scholar 

  • Allan JD, Flecker AS (1993) Biodiversity conservation in running waters. Bioscience 43:32–43

    Article  Google Scholar 

  • Allan J, Erickson D, Fay J (1997) The influence of catchment land use on stream integrity across multiple spatial scales. Freshw Biol 37:149–161

    Article  Google Scholar 

  • ANA (2011) Hidroweb: sistema de informações hidrológicas. Agencia Nacional de Águas, Brasília, Brazil. Available from http://hidroweb.ana.gov.br. Accessed July 2011)

  • APHA (1998) Standard methods for the examination of water and wastewater. American Public Health Association, Washington

    Google Scholar 

  • Beauchard O, Gagneur J, Brosse S (2003) Macroinvertebrate richness patterns in North African streams. J Biogeogr 30:1821–1833

    Article  Google Scholar 

  • Blamires D, Oliveira G, Barreto BS, Diniz-Filho JAF (2008) Habitat use and deconstruction of richness patterns in Cerrado birds. Acta Oecol 33:97–104

    Article  Google Scholar 

  • Brazil (2004) Carta geológica do Brasil ao milionésimo (folha SE23 Belo Horizonte). Ministério de Minas e Energia/CPRM/Serviço Geológico do Brasil, Brasília

  • Britski H, Sato Y, Rosa A (1988) Manual de identificação de peixes da região de Três Marias (com chave de identificação para os peixes da bacia do São Francisco). Câmara dos Deputados/CODEVASF, Brasília

    Google Scholar 

  • Brooks TM, Mittermeier RA, Mittermeier CG, Fonseca GAB, Rylands AB, Konstant WR, Flick P, Pilgrim J, Oldfield S, Magin G, Hilton-Taylor C (2002) Habitat loss and extinction in the hotspots of biodiversity. Conserv Biol 16:909–923

    Article  Google Scholar 

  • Brown LR, Cuffney TF, Coles JF, Fitzpatrick F, McMahon G, Steuer J, Bell AH, May JT (2009) Urban streams across the USA: lessons learned from studies in 9 metropolitan areas. J North Am Benthol Soc 28:1051–1069

    Article  Google Scholar 

  • Bryce SA, Lomnicky GA, Kaufmann PR (2010) Protecting sediment-sensitive aquatic species in mountain streams through the application of biologically based streambed sediment criteria. J North Am Benthol Soc 29:657–672

    Article  Google Scholar 

  • Cao Y, Larsen DP, Hughes RM, Angermeier PL, Patton TM (2002) Sampling effort affects multivariate comparisons of stream assemblages. J North Am Benthol Soc 21:701

    Article  Google Scholar 

  • Casatti L, Mendes HF, Ferreira KM (2003) Aquatic macrophytes as feeding site for small fishes in the Rosana Reservoir, Paranapanema River, southeastern Brazil. Braz J Biol 63:213–222

    Article  CAS  PubMed  Google Scholar 

  • Casatti L, Ferreira CP, Langeani F (2008) A fish-based biotic integrity index for assessment of lowland streams in southeastern Brazil. Hydrobiologia 623:173–189

    Article  Google Scholar 

  • Clarke A, MacNally R, Bond N, Lake PS (2008) Macroinvertebrate diversity in headwater streams: a review. Freshw Biol 53:1707–1721

    Article  Google Scholar 

  • Davies SP, Jackson SK (2006) The biological condition gradient: a descriptive model for interpreting change in aquatic ecosystems. Ecol Appl 16:1251–1266

    Article  PubMed  Google Scholar 

  • Diniz-Filho JAF, Bini LM, Hawkins BA (2003) Spatial autocorrelation and red herrings in geographical ecology. Glob Ecol Biogeogr 12:53–64

    Article  Google Scholar 

  • Diniz-Filho JAF, Bastos RP, Rangel TFLVB, Bini LM, Carvalho P, Silva RJ (2005) Macroecological correlates and spatial patterns of anuran description dates in the Brazilian Cerrado. Glob Ecol Biogeogr 14:469–477

    Article  Google Scholar 

  • Dudgeon D, Arthington AH, Gessner MO, Kawabata Z-I, Knowler DJ, Lévêque C, Naiman RJ, Prieur-Richard A-H, Soto D, Stiassny MLJ, Sullivan CA (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev Camb Philos Soc 81:163–182

    Article  PubMed  Google Scholar 

  • Essleman PC, Infante DM, Wang L, Cooper AR, Wieferich D, Tsang Y-P, Thornbrugh DJ, Taylor WW (2013) Regional fish community indicators of landscape disturbance in the conterminous United States. Ecol Ind 26:163–173

    Article  Google Scholar 

  • Feio MJ, Ferreira WR, Macedo DR, Eller AP, Alves CBM, França JS, Callisto M (2013) Defining and testing targets for the recovery of tropical streams based on macroinvertebrate communities and abiotic conditions. River Res Appl. doi:10.1002/rra.2716

    Google Scholar 

  • Fore L, Karr J, Wisseman R (1996) Assessing invertebrate responses to human activities: evaluating alternative approaches. J North Am Benthol Soc 15:212–231

    Article  Google Scholar 

  • Frissell CA, Liss WJ, Warren CE, Hurley MD (1986) A hierarchical framework for stream habitat classification: viewing streams in a watershed context. Environ Manag 10:199–214

    Article  Google Scholar 

  • Gerth WJ, Herlihy AT (2006) Effect of sampling different habitat types in regional macroinvertebrate bioassessment surveys. J North Am Benthol Soc 25:501–512

    Article  Google Scholar 

  • Goldstein RM, Carlisle DM, Meador MR, Short TM (2007) Can basin land use effects on physical characteristics of streams be determined at broad geographic scales? Environ Monit Assess 130:495–510

    Article  PubMed  Google Scholar 

  • Google (2010) Google earth. Google, Inc., Mountain View

  • Graça W, Pavanelli C (2007) Peixes da planície de inundação do alto rio Paraná e áreas adjacentes. Eduem, Maringá

    Google Scholar 

  • Graham M (2003) Confronting multicollinearity in ecological multiple regression. Ecology 84:2809–2815

    Article  Google Scholar 

  • Harrel F (2001) Regression modeling strategies, with applications to linear models, logistic regression, and survival analysis. Springer, New York

    Google Scholar 

  • Hitt NP, Angermeier PL (2008) Evidence for fish dispersal from spatial analysis of stream network topology. J North Am Benthol Soc 27:304–320

    Article  Google Scholar 

  • Hrodey PJ, Sutton TM, Frimpong EA, Simon TP (2009) Land-use impacts on watershed health and integrity in Indiana warmwater streams. Am Midl Nat 161:76–95

    Article  Google Scholar 

  • Hughes RM, Noss RF (1992) Biological diversity and biological integrity: current concerns for lakes and streams. Fisheries 17:11–19

    Article  Google Scholar 

  • Hughes RM, Peck DV (2008) Acquiring data for large aquatic resource surveys: the art of compromise among science, logistics, and reality. J North Am Benthol Soc 27:837–859

    Article  Google Scholar 

  • Hughes RM, Kaufmann PR, Herlihy AT, Kincaid TM, Reynolds L, Larsen DP (1998) A process for developing and evaluating indices of fish assemblage integrity. Can J Fish Aquat Sci 55:1618–1631

    Article  Google Scholar 

  • Hughes RM, Howlin S, Kaufmann PR (2004) A biointegrity index (IBI) for coldwater streams of western Oregon and Washington. Trans Am Fish Soc 133:1497–1515

    Article  Google Scholar 

  • Hughes RM, Herlihy AT, Kaufmann PR (2010) An evaluation of qualitative indexes of physical habitat applied to agricultural streams in ten U.S. states. J Am Water Res Assoc 46:792–806

    Article  CAS  Google Scholar 

  • Hughes RM, Kaufmann PR, Weber MH (2011) National and regional comparisons between Strahler order and stream size. J North Am Benthol Soc 30:103–121

    Article  Google Scholar 

  • IBGE (1991) Manual técnico da vegetação brasileira. Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro

    Google Scholar 

  • IBGE (2011) Cadastro nacional de endereços para fins estatísticos. Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro, Brazil. Available from http://www.censo2010.ibge.gov.br/cnefe. Accessed Nov 2011

  • Junqueira NT (2011) Ictiofauna de riachos da bacia do Rio Araguari, MG: estrutura, composição e relações com aspectos geográficos e amostrais. Thesis, Federal University of Lavras, Brazil

  • Johnson LB, Breneman DH, Richards C (2003) Macroinvertebrate community structure and function associated with large wood in low gradient streams. River Res Appl 19:199–218

    Article  Google Scholar 

  • Johnston K, Ver Hoef J, Krivoruchko K, Lucas N (2001) Using ArcGIS geostatistical analyst. ESRI Press, Redlands

    Google Scholar 

  • Karr JR (1999) Defining and measuring river health. Freshw Biol 41:221–234

    Article  Google Scholar 

  • Kaufmann P, Hughes R (2006) Geomorphic and anthropogenic influences on fish and amphibians in Pacific Northwest coastal streams. In: Hughes RM, Wang L, Seelbach PW (eds) Landscape influences on stream habitat and biological assemblages. Symposium 48. American Fisheries Society, Bethesda, pp 429–455

  • Kaufmann P, Levine P, Robison E, Seeliger C, Peck D (1999) Quantifying physical habitat in wadeable streams. EPA/620/R-99/003. US Environmental Protection Agency, Washington

  • Kaufmann PR, Larsen DP, Faustini JM (2009) Bed stability and sedimentation associated with human disturbances in Pacific Northwest streams. J Am Water Res Assoc 45:434–459

    Article  Google Scholar 

  • Kerans BL, Karr JR (1994) A benthic index of biotic integrity (B-IBI) for rivers of the Tennessee Valley. Ecol Appl 4:768

    Article  Google Scholar 

  • Lammert M, Allan JD (1999) Assessing biotic integrity of streams: effects of scale in measuring the influence of land use/cover and habitat structure on fish and macroinvertebrates. Environ Manag 23:257–270

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier BV, Amsterdan

    Google Scholar 

  • Li J, Herlihy A, Gerth W, Kaufmann P, Gregory S, Urquhart S, Larsen DP (2001) Variability in stream macroinvertebrates at multiple spatial scales. Freshw Biol 46:87–97

    Article  Google Scholar 

  • Ligeiro R, Hughes RM, Kaufmann PR, Macedo DR, Firmiano KR, Ferreira WR, Oliveira D, Melo AS, Callisto M (2013) Defining quantitative stream disturbance gradients and the additive role of habitat variation to explain macroinvertebrate taxa richness. Ecol Ind 25:45–57

    Article  Google Scholar 

  • Lyons J, Wang L, Simonson TD (1996) Development and validation of an index of biotic integrity for coldwater streams in Wisconsin. N Am J Fish 16:241–256

    Article  Google Scholar 

  • MacNally R (2000) Regression and model-building in conservation biology, biogeography and ecology: the distinction between–and reconciliation of–“predictive” and “explanatory” models. Biodivers Conserv 9:655–671

    Article  Google Scholar 

  • Marzin A, Archaimbault V, Belliard J, Chauvin C, Delmas F, Pont D (2012a) Ecological assessment of running waters: do macrophytes, macroinvertebrates, diatoms and fish show similar responses to human pressures? Ecol Ind 23:56–65

    Article  CAS  Google Scholar 

  • Marzin A, Verdonschot PFM, Pont D (2012b) The relative influence of catchment, riparian corridor, and reach-scale anthropogenic pressures on fish and macroinvertebrate assemblages in French rivers. Hydrobiologia 704:375–388

    Article  Google Scholar 

  • McCormick FH, Hughes RM, Kaufmann PR, Peck DV, Stoddard JL, Herlihy AT (2001) Development of an index of biotic integrity for the Mid-Atlantic Highlands region. Trans Am Fish Soc 130:857–877

    Article  Google Scholar 

  • Melo AS, Rangel TFLVB, Diniz-Filho JAF (2009) Environmental drivers of beta-diversity patterns in New-World birds and mammals. Ecography 32:226–236

    Article  Google Scholar 

  • Merritt RW, Cummins K (1996) An introduction to the aquatic insects of North America. Kendall/Hunt Publishing Company, Dubuque

    Google Scholar 

  • Montgomery DR (1999) Process domains and the river continuum. J Am Water Res Assoc 35:397–410

    Article  Google Scholar 

  • Moreno P, França JS, Ferreira WR, Paz AD, Monteiro IM, Callisto M (2009) Use of the BEAST model for biomonitoring water quality in a neotropical basin. Hydrobiologia 630:231–242

    Article  CAS  Google Scholar 

  • Moya N, Hughes RM, Domínguez E, Gibon F-M, Goitia E, Oberdorff T (2011) Macroinvertebrate-based multimetric predictive models for evaluating the human impact on biotic condition of Bolivian streams. Ecol Ind 11:840–847

    Article  Google Scholar 

  • Mugnai R, Nessimian J, Baptista D (2010) Manual de identificação de macroinvertebrados aquáticos do estado do Rio de Janeiro. Technical Books Editora, Rio de Janeiro

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • O’Neill R, Johnson A, King A (1989) A hierarchical framework for the analysis of scale. Landscape Ecol 3:193–205

    Article  Google Scholar 

  • Oberdorff T, Tedesco PA, Hugueny B, Leprieur F, Beauchard O, Brosse S, Dürr HH (2011) Global and regional patterns in riverine fish species richness: a review. Int J Ecol 2011:1–12

    Article  Google Scholar 

  • Olsen AR, Peck DV (2008) Survey design and extent estimates for the wadeable streams assessment. J North Am Benthol Soc 27:822–836

    Article  Google Scholar 

  • Omernik J, Hughes R, Griffith G, Hellyer G (2011) Common geographic frameworks. In: Landscape and predictive tools: a guide to spatial analysis for environmental assessment. EPA/100/R-11/002. US Environmental Protection Agency, Washington, pp 1–46

  • Paulsen SG, Mayio A, Peck DV, Stoddard JL, Tarquinio E, Holdsworth SM, Van Sickle J, Yuan LL, Hawkins CP, Herlihy AT, Kaufmann PR, Barbour MT, Larsen DP, Olsen AR (2008) Condition of stream ecosystems in the US: an overview of the first national assessment. J North Am Benthol Soc 27:812–821

    Article  Google Scholar 

  • Peck D, Herlihy A, Hill B, Hughes R, Kaufmann P, Klemm D, Lazorchak J, McCormick F, Peterson S, Ringold P, Magee T, Cappaert M (2006) Monitoring and Assessment Program—Surface Waters Western Pilot Study: field operations manual for wadeable streams. EPA/620/R-06/003. US Environmental Protection Agency, Washington

  • Pérez GAR (1988) Guía para el estúdio de los macroinvertebrados acuatico del Departamento de Antioquia. Fondo Fen Colômbia, Universidad de Antioquia, Colciencias, Medelin

  • Pinto BCT, Araujo FG, Hughes RM (2006) Effects of landscape and riparian condition on a fish index of biotic integrity in a large Southeastern Brazil river. Hydrobiologia 556:69–83

    Article  Google Scholar 

  • Pinto BCT, Araujo FG, Rodrigues VD, Hughes RM (2009) Local and ecoregion effects on fish assemblage structure in tributaries of the Rio Paranaíba do Sul, Brazil. Freshw Biol 54:2600–2615

    Article  Google Scholar 

  • Pont D, Hugueny B, Rogers C (2007) Development of a fish-based index for the assessment of river health in Europe: the European fish index. Fish Manag Ecol 14:427–439

    Article  Google Scholar 

  • Pont D, Hughes RM, Whittier TR, Schmutz S (2009) A predictive index of biotic integrity model for aquatic-vertebrate assemblages of western U.S. streams. Trans Am Fish Soc 138:292–305

    Article  Google Scholar 

  • Rangel TFLVB, Diniz-Filho JAF, Bini LM (2006) Towards an integrated computational tool for spatial analysis in macroecology and biogeography. Glob Ecol Biogeogr 15:321–327

    Article  Google Scholar 

  • Rangel TFLVB, Diniz-Filho JAF, Bini LM (2010) SAM: a comprehensive application for spatial analysis in macroecology. Ecography 33:46–50

    Article  Google Scholar 

  • Ratter J, Ribeiro J, Bridgewater S (1997) The Brazilian cerrado vegetation and threats to its biodiversity. Ann Bot 80:223–230

    Article  Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  CAS  PubMed  Google Scholar 

  • Sály P, Takács P, Kiss I, Bíró P, Erős T (2011) The relative influence of spatial context and catchment- and site-scale environmental factors on stream fish assemblages in a human-modified landscape. Ecol Freshw Fish 20:251–262

    Article  Google Scholar 

  • Steel EA, Hughes RM, Fullerton AH, Schmutz S, Young JA, Fukushima M, Muhar S, Poppe M, Feist B, Trautwein C (2010) Are we meeting the challenges of landscape-scale riverine research? A review. Living Rev Landscape Res 4:1–60

    Article  Google Scholar 

  • Stevens DL, Olsen AR (2004) Spatially balanced sampling of natural resources. J Am Stat Assoc 99:262–278

    Article  Google Scholar 

  • Stoddard JL, Herlihy AT, Peck DV, Hughes RM, Whittier TR, Tarquinio E (2008) A process for creating multimetric indices for large-scale aquatic surveys. J North Am Benthol Soc 27:878–891

    Article  Google Scholar 

  • Tonn WM (1990) Climate change and fish communities: a conceptual framework. Trans Am Fish Soc 119:337–352

    Article  Google Scholar 

  • USEPA (2013) National Rivers and Streams Assessment 2008-2009: a collaborative survey. EPA/841/D-13/001. US Environmental Protection Agency, Office of Wetlands, Oceans and Watersheds and Office of Research and Development, Washington

  • USGS (2005) Shuttle radar topography mission—SRTM. United States Geological Survey, Washington

    Google Scholar 

  • Vannote R, Minshall G, Cummins K, Sedell J, Cushing C (1980) The river continuum concept. Can J Fish Aquat Sci 37:130–137

    Article  Google Scholar 

  • Vinson MR, Hawkins CP (1998) Biodiversity of stream insects: variation at local, basin, and regional scales. Annu Rev Entomol 43:271–293

    Article  CAS  PubMed  Google Scholar 

  • Walser CA, Bart HL (1999) Influence of agriculture on in-stream habitat and fish community structure in Piedmont watersheds of the Chattahoochee River system. Ecol Freshw Fish 8:237–246

    Article  Google Scholar 

  • Walters DM, Roy AH, Leigh DS (2009) Environmental indicators of macroinvertebrate and fish assemblage integrity in urbanizing watersheds. Ecol Ind 9:1222–1233

    Article  CAS  Google Scholar 

  • Wang L, Lyons J, Kanehl P, Gatti R (1997) Influences of watershed land use on habitat quality and biotic integrity in Wisconsin streams. Fisheries 22:6–12

    Article  Google Scholar 

  • Wang L, Seelbach PW, Hughes RM (2006) Introduction to landscape influences on stream habitats and biological assemblages. In: Hughes RM, Wang L, Seelbach PW (eds) Landscape influences on stream habitat and biological assemblages. Symposium 48. American Fisheries Society, Bethesda, pp 1–23

  • Wantzen KM, Siqueira A, Cunha CN, de Sá Pereira MF (2006) Stream-valley systems of the Brazilian Cerrado: impact assessment and conservation scheme. Aquatic Conserv Mar Freshw Ecosyst 16:713–732

    Article  Google Scholar 

  • Weigel BM, Henne LJ, Martínez-Rivera LM, Martinez-Rivera LM (2002) Macroinvertebrate-based index of biotic integrity for protection of streams in West-Central Mexico. J North Am Benthol Soc 21:686

    Article  Google Scholar 

  • Whittier TR, Van Sickle J (2010) Macroinvertebrate tolerance values and an assemblage tolerance index (ATI) for western USA streams and rivers. J North Am Benthol Soc 29:852–866

    Article  Google Scholar 

  • Whittier TR, Stoddard JL, Hughes RM, Lomnicky G (2006) Associations among catchment- and site-scale disturbance indicators and biological assemblages at least- and most-disturbed stream and river sites in the western USA. In: Hughes RM, Wang L, Seelbach PW (eds) Landscape influences on stream habitat and biological assemblages. Symposium 48. American Fisheries Society, Bethesda, pp 641–664

  • Whittier TR, Hughes RM, Stoddard JL, Lomnicky GA, Peck DV, Herlihy AT (2007a) A structured approach for developing indices of biotic integrity: three examples from streams and rivers in the Western USA. Trans Am Fish Soc 136:718–735

    Article  Google Scholar 

  • Whittier TR, Stoddard JL, Larsen DP, Herlihy AT (2007b) Selecting reference sites for stream biological assessments: best professional judgment or objective criteria. J North Am Benthol Soc 26:349–360

    Article  Google Scholar 

Download references

Acknowledgments

We received funding from CEMIG-Programa Peixe Vivo, P&D ANEEL-CEMIG (GT-487), CAPES, CNPq, FAPEMIG and Fulbright Brasil. MC was awarded a productivity in research grant by CNPq – Conselho Nacional de Desenvolvimento e Pesquisa (CNPq No. 302960/2011-2) and a Minas Gerais State Researcher Grant by FAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG PPM-00077/13). PSP was awarded a productivity in research grant by CNPq  (CNPq No. 306325/2011-0) and a Minas Gerais State Researcher Grant by FAPEMIG (FAPEMIG PPM-00237/13). Colleagues from the CEFET-MG, PUC-MG, UFLA and UFMG assisted with field collections and laboratory work. We are grateful for assistance in statistical design and site selection from Tony Olsen, Marc Weber, and Phil Larsen and we thank Randy Comeleo, Marc Weber, Bob Ozretich, and two anonymous journal reviewers for helpful reviews that improved our manuscript. This manuscript was subjected to review by the National Health and Environmental Effects Research Laboratory’s Western Ecology Division and approved for publication. Approval does not signify that the contents reflect the views of the Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego R. Macedo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 58 kb)

Supplementary material 2 (PDF 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macedo, D.R., Hughes, R.M., Ligeiro, R. et al. The relative influence of catchment and site variables on fish and macroinvertebrate richness in cerrado biome streams. Landscape Ecol 29, 1001–1016 (2014). https://doi.org/10.1007/s10980-014-0036-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-014-0036-9

Keywords

Navigation