Skip to main content

Advertisement

Log in

Estimating vertebrate, benthic macroinvertebrate, and diatom taxa richness in raftable Pacific Northwest rivers for bioassessment purposes

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The number of sites sampled must be considered when determining the effort necessary for adequately assessing taxa richness in an ecosystem for bioassessment purposes; however, there have been few studies concerning the number of sites necessary for bioassessment of large rivers. We evaluated the effect of sample size (i.e., number of sites) necessary to collect vertebrate (fish and aquatic amphibians), macroinvertebrate, and diatom taxa from seven large rivers in Oregon and Washington, USA during the summers of 2006–2008. We used Monte Carlo simulation to determine the number of sites needed to collect 90–95% of the taxa 75–95% of the time from 20 randomly located sites on each river. The river wetted widths varied from 27.8 to 126.0 m, mean substrate size varied from 1 to 10 cm, and mainstem distances sampled varied from 87 to 254 km. We sampled vertebrates at each site (i.e., 50 times the mean wetted channel width) by nearshore-raft electrofishing. We sampled benthic macroinvertebrates nearshore through the use of a 500-μm mesh kick net at 11 systematic stations. From each site composite sample, we identified a target of 500 macroinvertebrate individuals to the lowest possible taxon, usually genus. We sampled benthic diatoms nearshore at the same 11 stations from a 12-cm2 area. At each station, we sucked diatoms from soft substrate into a 60-ml syringe or brushed them off a rock and rinsed them with river water into the same jar. We counted a minimum of 600 valves at 1,000× magnification for each site. We collected 120–211 diatom taxa, 98–128 macroinvertebrate taxa, and 14–33 vertebrate species per river. To collect 90-95% of the taxa 75-95% of the time that were collected at 20 sites, it was necessary to sample 11–16 randomly distributed sites for vertebrates, 13–17 sites for macroinvertebrates, and 16–18 sites for diatoms. We conclude that 12–16 randomly distributed sites are needed for cost-efficient sampling of vertebrate richness in the main stems of our study rivers, but 20 sites markedly underestimates the species richness of benthic macroinvertebrates and diatoms in those rivers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allan, J. D. (1995). Stream ecology: structure and function of running waters. New York: Chapman & Hall.

    Google Scholar 

  • Allan, J. D., & Flecker, A. S. (1993). Biodiversity conservation in running waters. BioScience, 43, 32–43.

    Article  Google Scholar 

  • Angermeier, P. L., & Smogor, R. A. (1995). Estimating number of species and relative abundances in stream-fish communities: effects of sampling effort and discontinuous spatial distributions. Canadian Journal of Fisheries and Aquatic Sciences, 52, 936–949.

    Article  Google Scholar 

  • Angradi, T. R., Pearson, M. S., Bolgrien, D. W., Jicha, T. M., Taylor, D. L., & Hill, B. H. (2009). Multimetric macroinvertebrate indices for mid-continent US great rivers. Journal of the North American Benthological Society, 28, 785–804.

    Article  Google Scholar 

  • Bartsch, L. A., Richardson, W. B., & Naimo, T. J. (1998). Sampling benthic macroinvertebrates in a large flood-plain river: considerations of study design, sample size, and cost. Environmental Monitoring and Assessment, 52, 425–439.

    Article  Google Scholar 

  • Biggs, B. J. F., & Kilroy, C. (2000). Stream periphyton monitoring manual. Christchurch: NIWA, New Zealand Ministry for the Environment.

    Google Scholar 

  • Blocksom, K., Emery, E., & Thomas, J. (2009). Sampling effort needed to estimate condition and species richness in the Ohio River, USA. Environmental Monitoring and Assessment, 155, 157–167.

    Article  Google Scholar 

  • Cao, Y., Larsen, D. P., & Hughes, R. M. (2001). Evaluating sampling sufficiency in fish assemblage surveys: a similarity-based approach. Canadian Journal of Fisheries and Aquatic Sciences, 58, 1782–1793.

    Article  Google Scholar 

  • Cao, Y., Larsen, D. P., Hughes, R. M., Angermeier, P. L., & Patton, T. M. (2002). Sampling effort affects multivariate comparisons of stream assemblages. Journal of the North American Benthological Society, 21, 701–714.

    Article  Google Scholar 

  • Cao, Y., Hawkins, C. P., Larsen, D. P., & Van Sickle, J. (2007). Effects of sample standardization on mean species detectabilities and estimates of relative differences in species richness among assemblages. The American Naturalist, 170, 381–395.

    Article  Google Scholar 

  • Collier, K. J., & Lill, A. (2008). Spatial patterns in the composition of shallow-water macroinvertebrate communities of a large New Zealand river. New Zealand Journal of Marine and Freshwater Research, 42, 129–141.

    Article  Google Scholar 

  • Czech, B., Angermeier, P. L., Daly, H. E., Pister, E. P., & Hughes, R. M. (2004). Fish conservation, sustainable fisheries, and economic growth: no more fish stories. Fisheries, 29(8), 36–37.

    Google Scholar 

  • Delaware River Basin Commission. (2007). DRBC Delaware River biomonitoring program 2006–2007 quality assurance project plan. West Trenton: Delaware River Basin Commission.

    Google Scholar 

  • Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z.-I., Knowler, D. J., Lévêque, C., et al. (2006). Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews, 81, 163–182.

    Article  Google Scholar 

  • Dußling, U., Berg, R., Klinger, H., Wolter, C., & Wilken, R.-D. (2004). Assessing the ecological status of river systems using fish assemblages. In C. Steinberg, W. Calmano, & H. Klapper (Eds.), Handbuch angewandte limnologie, VIII-7.4, 20. Erg.Lfg. 12/04 (pp. 1–84). Landsberg am Lech: Ecomed.

    Google Scholar 

  • Dynesius, M., & Nilsson, C. (1994). Fragmentation and flow regulation of river systems in the northern third of the world. Science, 266, 753–762.

    Article  CAS  Google Scholar 

  • Eros, T., Toth, B., Sevcsik, A., & Schmera, D. (2008). Comparison of fish assemblage diversity in natural and artificial rip-rap habitats in the littoral zone of a large river (River Danube, Hungary). International Review of Hydrobiology, 93, 88–105.

    Article  Google Scholar 

  • Fausch, K. D., Karr, J. R., & Yant, P. R. (1984) Regional application of an index of biotic integrity based on stream fish communities. Transactions of the American Fisheries Society, 113, 39–55.

    Google Scholar 

  • Fausch, K. D., Torgersen, C. E., Baxter, C. V., & Li, H. W. (2002). Landscapes to riverscapes: bridging the gap between research and conservation of stream fishes. BioScience, 52, 483–498.

    Article  Google Scholar 

  • Fesl, C. (2002). Biodiversity and resource use of larval chironomids in relation to environmental factors in a large river. Freshwater Biology, 47, 1065–1087.

    Article  Google Scholar 

  • Fischer, J. R., & Paukert, C. P. (2009). Effects of sampling effort, assemblage similarity, and habitat heterogeneity on estimates of species richness and relative abundance of stream fishes. Canadian Journal of Fisheries and Aquatic Sciences, 66, 277–290.

    Article  Google Scholar 

  • Flotemersch, J. E., Blocksom, K., Hutchens, J. J., Jr., & Autrey, B. C. (2006). Development of a standardized large river bioassessment protocol (LR-BP) for macroinvertebrate assemblages. River Research and Applications, 22, 775–790.

    Article  Google Scholar 

  • Flotemersch, J. E., Stribling, J. B., Hughes, R. M., Reynolds, L., Paul, M. J., & Wolter, C. (2010). Site length for biological assessment of boatable rivers. River Research & Applications, 27, 520–535.

    Article  Google Scholar 

  • Gammon, J. R. (1976). The fish populations of the middle 340 km of the Wabash River (Water Resources Research Center Technical Report 86). West Lafayette: Purdue University.

    Google Scholar 

  • Gammon, J. R., & Simon, T. P. (2000). Variation in a great river index of biotic integrity over a 20-year period. Hydrobiologia, 422–423, 291–304.

    Article  Google Scholar 

  • Harrell, F. E., Jr. (2001). Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis. New York: Springer-Verlag.

    Google Scholar 

  • Hughes, R. M., & Herlihy, A. T. (2007). Electrofishing distance needed to estimate consistent index of biotic integrity (IBI) scores in raftable Oregon rivers. Transactions of the American Fisheries Society, 136, 135–141.

    Article  Google Scholar 

  • Hughes, R. M., & Peck, D. V. (2008). Acquiring data for large aquatic resource surveys: the art of compromise among science, logistics, and reality. Journal of the North American Benthological Society, 27, 837–859.

    Article  Google Scholar 

  • Hughes, R. M., Kaufmann, P. R., Herlihy, A. T., Intelmann, S. S., Corbett, S. C., Arbogast, M. C., et al. (2002). Electrofishing distance needed to estimate fish species richness in raftable Oregon rivers. North American Journal of Fisheries Management, 22, 1229–1240.

    Article  Google Scholar 

  • Hughes, R. M., Rinne, J. N., & Calamusso, B. (2005). Introduction to historical changes in large river fish assemblages of the Americas. In J. N. Rinne, R. M. Hughes, & B. Calamusso (Eds.), Historical changes in large river fish assemblages of the Americas (pp. 1–12). Bethesda: Symposium 45, American Fisheries Society.

    Google Scholar 

  • Hynes, H. B. N. (1970). The ecology of running waters. Toronto: University of Toronto Press.

    Google Scholar 

  • Kanno, Y., Vokoun, J. C., Dauwalter, D. C., Hughes, R. M., Herlihy, A. T., Maret, T. R., et al. (2009). Influence of rare species on electrofishing distance–species richness relationships at stream sites. Transactions of the American Fisheries Society, 138, 1240–1251.

    Article  Google Scholar 

  • Kettratad, J., & Markle, D. F. (2010). Redescription of the Tyee sucker, Catostomus tsiltcoosensis (Catostomidae). Western North American Naturalist, 70, 273–287.

    Article  Google Scholar 

  • Krammer, K., & Lange-Bertalot, H. (1986). Bacillariophyceae, teil 1. Naviculaceae. Heidelberg: Spektrum Akademischer Verlag.

    Google Scholar 

  • Krammer, K., & Lange-Bertalot, H. (1988). Bacillariophyceae, teil 2. Epithemiaceae, Bacillariophyceae, Surirellaceae. Heidelberg: Spektrum Akademischer Verlag.

    Google Scholar 

  • Krammer, K., & Lange-Bertalot, H. (1991a). Bacillariophyceae, teil 3. Centrales, Fragilariaceae, Eunotiaceae, Achnanthaceae. Heidelberg: Spektrum Akademischer Verlag.

    Google Scholar 

  • Krammer, K., & Lange-Bertalot, H. (1991b). Bacillariophyceae, teil 4. Achnanthaceae, kritische erganzungen zu Navicula (lineolate) und Gomphonema. Heidelberg: Spektrum Akademischer Verlag.

    Google Scholar 

  • Lane, C. L., Flotemersch, J. E., Blocksom, K. A., & DeCelles, S. (2007). Effect of sampling method on diatom composition for use in monitoring and assessing large river condition. River Research and Applications, 23, 1126–1146.

    Article  Google Scholar 

  • LaVigne, H. R., Hughes, R. M., & Herlihy, A. T. (2008). Bioassessments to detect changes in Pacific Northwest river fish assemblages: a Malheur River case study. Northwest Science, 82, 251–258.

    Article  Google Scholar 

  • LaVigne, H. R., Hughes, R. M., Wildman, R. C., Gregory, S. V., & Herlihy, A. T. (2008). Summer distribution and species richness of non-native fishes in the mainstem Willamette River, Oregon, 1944–2006. Northwest Science, 82, 83–93.

    Article  Google Scholar 

  • Leland, H. V., Brown, L. R., & Mueller, D. K. (2001). Distribution of algae in the San Joaquin River, California, in relation to nutrient supply, salinity and other environmental factors. Freshwater Biology, 46, 1139–1167.

    Article  Google Scholar 

  • Leprieur, F., Beauchard, O., Blanchet, S., Oberdorff, T., & Brosse, S. (2008). Fish invasions in the world’s river systems: when natural processes are blurred by human activities. Public Library of Science: Biology, 6(2), e28. doi:10.1371/journal.pbio.0060028.

    Google Scholar 

  • Li, J., Herlihy, A. T., Gerth, W., Kaufmann, P. R., Gregory, S. V., Urquhart, S., et al. (2001). Variability in stream macroinvertebrates at multiple spatial scales. Freshwater Biology, 46, 87–97.

    Google Scholar 

  • Ligeiro, R., Melo, A. S., & Callisto, M. (2010). Spatial scale and the diversity of macroinvertebrates in a neotropical catchment. Freshwater Biology, 55, 424–435.

    Article  Google Scholar 

  • Limburg, K. E., Hughes, R. M., Jackson, D. C., & Czech, B. (2011). Population increase, economic growth, and fish conservation: collision course or savvy stewardship. Fisheries, 36, 27–34.

    Article  Google Scholar 

  • Lyons, J., Piette, R. R., & Niermeyer, K. W. (2001). Development, validation, and application of a fish-based index of biotic integrity for Wisconsin’s large warmwater rivers. Transactions of the American Fisheries Society, 130, 1077–1094.

    Article  Google Scholar 

  • Maret, T. R., Ott, D. S., & Herlihy, A. T. (2007). Electrofishing effort required to estimate biotic condition in southern Idaho rivers. North American Journal of Fisheries Management, 27, 1041–1052.

    Article  Google Scholar 

  • McGarvey, D. J., & Hughes, R. M. (2008). Longitudinal zonation of Pacific Northwest (U.S.A.) fish assemblages and the species-discharge relationship. Copeia, 2008, 311–321.

    Article  Google Scholar 

  • Miettinen, J. (2007). River Tenojoki: periphyton survey 2003. In S. Sivonen (Ed.), Ecological state of the River Tenojoki—periphyton, macrozoobenthos and fish communities (pp. 6–46). Rovaniemi: University of Lapland Printing Centre.

    Google Scholar 

  • Moya, N., Hughes, R. M., Dominguez, E., Gibon, F.-M., Goita, E., & Oberdorff, T. (2011). Macroinvertebrate-based multimetric predictive models for measuring the biotic condition of Bolivian streams. Ecological Indicators, 11, 840–847.

    Article  Google Scholar 

  • Oberdorff, T., Guegan, J., & Hugueny, B. (1995). Global scale patterns of fish species richness in rivers. Ecography, 18, 345–352.

    Article  Google Scholar 

  • Patrick, R., & Reimer, C. W. (1966). The diatoms of the United States. Volume 1 (Monographs of the Academy of Natural Sciences of Philadelphia, no. 13). Philadelphia: Academy of Natural Sciences of Philadelphia.

    Google Scholar 

  • Patrick, R., & Reimer, C. W. (1975). The diatoms of the United States. Volume 2 (Monographs of the Academy of Natural Sciences of Philadelphia, no. 13). Philadelphia: Academy of Natural Sciences of Philadelphia.

    Google Scholar 

  • Peck, D. V., Averill, D. K., Herlihy, A. T., Hill, B. H., Hughes, R. M., Kaufmann, P. R., et al. (Eds.). (In Press). Environmental Monitoring and Assessment Program: surface waters western pilot study—field operations manual for nonwadeable rivers and streams. Washington, DC: US Environmental Protection Agency.

  • Perkins, J. (2004). Confessions of an economic hit man. New York: Penguin Books.

    Google Scholar 

  • Raunio, J., & Antilla-Huhtinen, M. (2008). Sample size determination for soft-bottom sampling in large rivers and comparison with the chironomid pupal exuvial technique (CPET). River Research and Applications, 24, 835–843.

    Article  Google Scholar 

  • Raunio, J., & Soininen, J. (2007). A practical and sensitive approach to large river periphyton monitoring: comparative performance of methods and taxonomic levels. Boreal Environmental Research, 12, 55–63.

    Google Scholar 

  • Reavie, E. D., Jicha, T. M., Angradi, T. R., Bolgrien, D. W., & Hill, B. H. (2010). Algal assemblages for large river monitoring: comparison among biovolume, absolute and relative abundance metrics. Ecological Indicators, 10, 167–177.

    Article  CAS  Google Scholar 

  • Reynolds, L., Herlihy, A. T., Kaufmann, P. R., Gregory, S. V., & Hughes, R. M. (2003). Electrofishing effort requirements for assessing species richness and biotic integrity in Western Oregon streams. North American Journal of Fisheries Management, 23, 450–461.

    Article  Google Scholar 

  • Schlosser, I. J. (1991). Stream fish ecology: a landscape perspective. BioScience, 41, 704–712.

    Article  Google Scholar 

  • Schneck, F., & Melo, A. S. (2010). Reliable sample sizes for estimating similarity among macroinvertebrate assemblages in tropical streams. Annals of Limnologie – International Journal of Limnologie, 46, 93–100.

    Article  Google Scholar 

  • Schönbauer, B. (1999). Spatio-temporal patterns of macrobenthic invertebrates in a free-flowing section of the River Danube in Austria. Archiv für Hydrobiologie, 115, 375–397.

    Google Scholar 

  • Sgro, G. V., Poole, J. B., & Johansen, J. R. (2007). Diatom species composition and ecology of the Animas River watershed, Colorado, USA. Western North American Naturalist, 67, 510–519.

    Article  Google Scholar 

  • Smith, K. L., & Jones, M. L. (2005). Watershed-level sampling effort requirements for determining riverine fish species composition. Canadian Journal of Fisheries and Aquatic Sciences, 62, 1580–1588.

    Article  Google Scholar 

  • Stevens, D. L., & Olsen, A. R. (2004). Spatially balanced sampling of natural resources. Journal of the American Statistical Association, 99, 262–278.

    Article  Google Scholar 

  • Stoddard, J. L., Herlihy, A. T., Peck, D. V., Hughes, R. M., Whittier, T. R., & Tarquinio, E. (2008). A process for creating multi-metric indices for large-scale aquatic surveys. Journal of the North American Benthological Society, 27, 878–891.

    Article  Google Scholar 

  • Tabachnick, B. G., & Fidell, L. S. (2001). Using multivariate statistics (4th ed.). Boston: Allyn & Bacon.

    Google Scholar 

  • Taylor, J. C., Janse van Vuuren, M. S., & Pieterse, A. J. H. (2007). The application and testing of diatom-based indices in the Vaal and Wilge Rivers, South Africa. Water SA, 33(1), 51–59.

    CAS  Google Scholar 

  • USEPA. (1987). Handbook of methods for acid deposition studies: laboratory analyses for surface water chemistry. EPA/600/4-87/026. Washington, DC: U. S. Environmental Protection Agency.

    Google Scholar 

  • USEPA and USGS (2006) NHD Plus. US Environmental Protection Agency and US Geological Survey, Washington, DC. (available at: http://www.epa.gov/waters/doc/rad/nhdplus.html).

  • Utrup, N. J., & Fisher, W. L. (2006). Development of a rapid bioassessment protocol for sampling fish in large prairie rivers. North American Journal of Fisheries Management, 26, 714–726.

    Article  Google Scholar 

  • Ward, J. V. (1998). Riverine landscapes: biodiversity patterns, disturbance regimes, and aquatic conservation. Biological Conservation, 83, 269–278.

    Article  Google Scholar 

  • Weilhoefer, C. L., & Pan, Y. (2007). A comparison of periphyton assemblages generated by two sampling protocols. Journal of North American Benthological Society, 26, 308–318.

    Article  Google Scholar 

  • Whittier, T. R., Hughes, R. M., Stoddard, J. L., Lomnicky, G. A., Peck, D. V., & Herlihy, A. T. (2007). A structured approach to developing indices of biotic integrity: three examples from western USA streams and rivers. Transactions of the American Fisheries Society, 136, 718–735.

    Article  Google Scholar 

  • Yoder, C. O., & Smith, M. A. (1999). Using fish assemblages in a state biological assessment and criteria program: essential concepts and considerations. In T. P. Simon (Ed.), Assessing the sustainability and biological integrity of water resources using fish communities (pp. 17–56). Boca Raton: CRC Press.

    Google Scholar 

Download references

Acknowledgments

This research was funded by grants to Oregon State University from the U.S. Environmental Protection Agency (RM832827, B. Hill, Project Officer), National Marine Fisheries Service (AB133FO8SE3579, C. Jordan, Project Officer), and U.S. Fish and Wildlife Service (81450-7-J528, M. Buettner, Project Officer). Data analyses and manuscript preparation were funded by the Fundacao de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG grant 00011/09) and the Companhia Energetica de Minas Gerais (CEMIG Projeto Peixe Vivo). Vertebrates were collected under permits from the National Marine Fisheries Service (1559), U.S. Fish and Wildlife Service (TE141832), Oregon Department of Fish and Wildlife (OR2008-4575), Washington Department of Fish and Wildlife (WA3424), and Oregon State University Institutional Animal Care and Use Committee (3430). Field work was conducted by H. LaVigne, J. Adams, T. Botsford, R. Emig, A. Farmer, B. Freese, C. Gewecke, L. Genzoli, E. Hughes, and S. Wiedemer. Chemical analyses were conducted by the Cooperative Chemical Analytical Laboratory, Forest Science Department, Oregon State University; vertebrate voucher specimens were confirmed by D. Markle; Fig. 1 and catchment values were produced by C. Johnson; and site physical habitat structure values were produced by C. Seeliger. R. Van Driesche and J. DiGuilio assisted in identifying macroinvertebrates. Critical reviews by T. Eros, V. Vono, J. Flotemersch, and two anonymous reviewers improved the submitted manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Hughes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hughes, R.M., Herlihy, A.T., Gerth, W.J. et al. Estimating vertebrate, benthic macroinvertebrate, and diatom taxa richness in raftable Pacific Northwest rivers for bioassessment purposes. Environ Monit Assess 184, 3185–3198 (2012). https://doi.org/10.1007/s10661-011-2181-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2181-9

Keywords

Navigation