Skip to main content

Advertisement

Log in

Vulnerability of Phyllocycla Species (Odonata: Gomphidae) to Current and Planned Anthropic Activities by the Brazilian Government

  • Ecology, Behavior and Bionomics
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

Abstract

Although most species distribution modeling (SDMs) are constructed at the species level, an appreciation of evolutionary processes has led to modeling above this level. In view of the difficulty in estimating the impacts of human actions on rare or deficient data species, we proposed a new approach to vulnerability assessment based on concepts already well established in the literature (ecological niche, niche conservatism, and extinction thresholds). We used distribution modeling to predict where species of the genus Phyllocycla (Calvert 1948) are most vulnerable to local extinctions and how the implementation of planned anthropic activities by the Brazilian government may modify the potential distribution of the genus in Brazil. We chose that genus because its conservation status is little known, especially due to the data gap about its geographical distribution. We proposed modeling the whole genus and used the niche conservatism theory to justify our methods. The anthropic activities considered in our analysis were agriculture and livestock, rural settlements, energy production installations, transportation, oil extraction, mining, and urbanization. We found that only 55.3% of the original potential distribution of Phyllocycla in Brazil remains available. The area compromised by anthropic activities comprises mainly the Cerrado and Atlantic Forest biomes, with less impact on the Amazon. However, with the implementation of activities planned by the Brazilian government, it is possible that an additional 13.6% of this area will be unavailable to species of Phyllocycla, especially in the Amazon, where interest in mining and the implementation of new hydroelectric production have increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3

Similar content being viewed by others

References

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232

    Google Scholar 

  • Almeida MC, Côrtes LG, De Marco P Jr (2010) New records and a niche model for the distribution of two Neotropical damselflies: Schistolobos boliviensis and Tuberculobasis inversa (Odonata: Coenagrionidae). Insect Conserv Divers 3:252–256

    Google Scholar 

  • ANEEL (2013) Agência Nacional de Energia Elétrica. http://www.aneel.gov.br/ Accessed 20 Nov 2013

  • ANP (2013) Agência Nacional de Petróleo, Gás Natural e Biocombustíveis. http://www.anp.gov.br/ Accessed 21 Nov 2013

  • Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47

    Google Scholar 

  • Barry S, Elith J (2006) Error and uncertainty in habitat models. J Appl Ecol 43:413–423

    Google Scholar 

  • Belle J (1988) A synopsis of the species of Phyllocycla Calvert, with descriptions of four new taxa and a key to the genera of Neotropical Gomphidae (Odonata, Gomphidae). Tijdschr Entomol 131:73–102

    Google Scholar 

  • Breimam L (2001) Random forests. Mach Learn 45:5–32

    Google Scholar 

  • Brasil (2010) Plano Nacional de Mineração 2030 (PNM-2030). Geologia, Mineração e Transformação Mineral. Ministério das Minas e Energia, Brasília

    Google Scholar 

  • Brooks TM, Mittermeier RA, Mittermeier CG, Fonseca GAB, Rylands AB, Konstant WR, Flick P, Pilgrim J, Oldfield S, Magin G, Hilton-Taylor (2002) Habitat loss and extinction in the hotspots of biodiversity. Conserv Biol 16:909–992

    Google Scholar 

  • Busby JR (1986) A biogeoclimatic analysis of Nothofagus cunninghamii (Hook) Oerst. in southeastern Australia. Aust J Ecol 11:1–7

    Google Scholar 

  • Busby JR (1991) BIOCLIM - a bioclimate analysis and prediction system. In: Margules CR, Austin MP (eds) Nature conservation: cost effective biological surveys and data analysis. CSIRO, Melbourne, pp 64–68

    Google Scholar 

  • Carvalho FG, Pinto NS, Oliveira-Júnior JMB, Juen L (2013) Effects of marginal vegetation removal on Odonata communities. Acta Limnol 25:10–18

    Google Scholar 

  • CBD (2001) Global biodiversity outlook. https://www.cbd.int/gbo1/gbo-pdf.shtml. Accessed 20 Set 2017

  • Clausnitzer V, Kalkman VJ, Ram M, Collen B, Baillie JEM, Bedjanic M, Darwall WRT, Dijkstra KB, Dow R, Hawking J, Karube H, Malikova E, Paulson D, Schutte K, Suhling F, Villanueva RJ, Ellenrieder NV, Wilson K (2009) Odonata enter the biodiversity crisis debate: the first global assessment of an insect group. Biol Conserv 142:1864–1869

    Google Scholar 

  • Corbet PS (1999) Dragonflies: behavior and ecology of Odonata. Comstock Publishing Associates, Ithaca

    Google Scholar 

  • Costa JM, Souza LOI, Oldrini BB (2004) Chave para identificação das famílias e gêneros das larvas conhecidas de Odonata do Brasil: comentários e registros bibliográficos (Insecta, Odonata). Publicações Avulsas do Museu Nacional. Brazil, Rio de Janeiro

    Google Scholar 

  • Cutler DR, Edwards TC Jr, Beard KH, Cutler A, Hess KT, Gibson J, Lawler JJ (2007) Random forests for classification in ecology. Ecology 88:2783–2792

    PubMed  Google Scholar 

  • Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332:53–58

    CAS  PubMed  Google Scholar 

  • De Lange HJ, Sala S, Vighi M, Faber JH (2010) Ecological vulnerability in risk assessment - a review and perspectives. Sci Total Environ 408:3871–3879

    PubMed  Google Scholar 

  • De Marco P Jr, Vianna DM (2005) Distribuição do esforço de coleta de Odonata no Brasil: subsídios para escolha de áreas prioritárias para levantamentos faunísticos. Lundiana 6:13–26

    Google Scholar 

  • De Marco P Jr, Nóbrega CC, Souza RA, Neiss UG (2015a) Modeling the distribution of a rare Amazonian odonate in relation to future deforestation. Freshw Sci 34:1123–1132

    Google Scholar 

  • De Marco P Jr, Batista JD, Cabette HSR (2015b) Community assembly of adult odonates in tropical streams: an ecophysiological hypothesis. PLoS One 10(4):e0123023. https://doi.org/10.1371/journal.pone.0123023

    Article  CAS  Google Scholar 

  • De Marco P Jr, Nóbrega CC (2018) Evaluating collinearity effects on species distribution models: an approach based on virtual species simulation. PLoS One 13(9):e0202403. https://doi.org/10.1371/journal.pone.0202403

    Article  CAS  Google Scholar 

  • De Marco P Jr, Villén S, Mendes P, Nóbrega CC, Cortes L, Castro T, Souza R (2018) Vulnerability of Cerrado threatened mammals: an integrative landscape and climate modeling approach. Biodivers Conserv. https://doi.org/10.1007/s10531-018-1615-x

  • Diniz-Filho JAF, De Marco P Jr, Hawkins BA (2010) Defying the curse of ignorance: perspectives in insect macroecology and conservation biogeography. Insect Conserv Divers 3:172–179

    Google Scholar 

  • DNIT (2013) Departamento Nacional de Infraestrutura de Transportes. http://www.dnit.gov.br/ Accessed 21 Nov 2013

  • DNPM (2013) Departamento Nacional de Produção Mineral. http://www.dnpm.gov.br/ Accessed 21 Nov 2013

  • Drake JM, Randin C, Guisan A (2006) Modelling ecological niches with support vector machines. J Appl Ecol 43:424–432

    Google Scholar 

  • Durán AP, Rauch J, Gaston KJ (2013) Global spatial coincidence between protected areas and metal mining activities. Biol Conserv 160:272–278

    Google Scholar 

  • Fahrig L (2001) How much habitat is enough? Biol Conserv 100:65–74

    Google Scholar 

  • Fahrig L (2002) Effect of habitat fragmentation on the extinction threshold: a synthesis. Ecol Appl 12:346–353

    Google Scholar 

  • Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40:1649–1663

    Google Scholar 

  • Fernandes GW, Goulart FF, Ranieri BD, Coelho MS, Dale K, Boesche N, Bustamante M, Carvalho FA, Carvalho DC, Dirzo R, Fernandes S, Galetti PM, Millan VEG, Mielke C, Ramirez JL, Neves A, Rogass C, Ribeiro SP, Scariot A, Soares-Filho B (2016) Deep into the mud: ecological and socio-economic impacts of the dam breach in Mariana, Brazil. Nat Conserv 14:35–45

    Google Scholar 

  • Ferreira J, Aragão LEOC, Barlow J, Barreto E, Berenguer E, Bustamante M, Gardner TA, Lees AC, Lima A, Louzada J, Parry L, Peres CA, Pardini R, Pompeu PS, Tabarelli M, Zuanon J (2014) Brazil’s environmental leadership at risk: mining and dams threaten protected areas. Science 346:706–707

    CAS  PubMed  Google Scholar 

  • Fulan JA, Raimundo R, Figueiredo D, Correia M (2010) Abundance and diversity of dragonflies four years after the construction of a reservoir. Limnetica 29:279–286

    Google Scholar 

  • Gentes ML, Whitworth TL, Waldner C, Fenton H, Smits JE (2007) Tree swallows (Tachycineta bicolor) nesting on wetlands impacted by oil sands mining are highly parasitized by the bird blow fly Protocalliphora spp. J Wildl Dis 43:167–171

    PubMed  Google Scholar 

  • Godoy BS, Camargos LM, Lodi S (2018) When phylogeny and ecology meet: modeling the occurrence of Trichoptera with environmental and phylogenetic data. Ecol Evol 8:5313–5322. https://doi.org/10.1002/ece3.4031

    Article  PubMed  PubMed Central  Google Scholar 

  • Google Inc. (2013) Google earth. version 7.0.3.8542

  • Groombridge B (1992) Global biodiversity: state of the Earth’s living resources. Chapman and Hall, New York

    Google Scholar 

  • Guo Q, Kelly M, Graham CH (2005) Support vector machines for predicting distribution of sudden oak death in California. Ecol Model 116:75–90

    Google Scholar 

  • Hanski I (2005) The shrinking world: ecological consequences of habitat loss. International Ecology Institute, Oldenfor/Luhe, Germany

    Google Scholar 

  • Hanski I (2011) Habitat loss, the dynamics of biodiversity, and a perspective on conservation. Ambio 40:248–255

    PubMed  PubMed Central  Google Scholar 

  • Hassal C (2012) Predicting the distributions of under-recorded Odonata using species distribution models. Insect Conserv Divers 5:192–201

    Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Google Scholar 

  • Hijmans RJ, Phillips S, Leathwick J, Elith J (2015) dismo: species distribution modeling. R package version 1.0–12

  • Hortal J, Jimenez-Valverde A, Gomez JF, Lobo JM, Baselga A (2008) Historical bias in biodiversity inventories affects the observed environmental niche of the species. Oikos 117:847–858

    Google Scholar 

  • Huntley B, Bartlein PJ, Prentice IC (1989) Climatic control of the distribution and abundance of beech (Fagus L.) in Europe and North America. J Biogeogr 16:551–560

    Google Scholar 

  • IBGE (2013) Instituto Brasileiro de Geografia e Estatística. http://www.ibge.gov.br/ Accessed 20 Nov 2013

  • INCRA (2013) Instituto Nacional de Colonização e Reforma Agrária. http://www.incra.gov.br/ Accessed 20 Nov 2013

  • Jiménez-Valverde A, Peterson AT, Soberón J, Overton JM, Aragon P, Lobo JM (2011) Use of niche models in invasive species risk assessments. Biol Invasions 13:2785–2797

    Google Scholar 

  • Johnson LB, Richards C, Host G, Arthur JW (1997) Landscape influences on water chemistry in Midwest stream ecosystems. Freshw Biol 37:193–208

    CAS  Google Scholar 

  • Karatzoglou A, Smola A, Hornik K, Zeileis A (2004) kernlab - an S4 package for kernel methods in R. J Stat Softw 11:1–20

    Google Scholar 

  • Korkeamäki E, Suhonen J (2002) Distribution and habitat specialization of species affect local extinction in dragonfly Odonata populations. Ecography 25:459–465

    Google Scholar 

  • Kozak KH, Wiens JJ (2006) Does niche conservatism promote speciation? A case study in North American salamanders. Evolution 60:2604–2621

    PubMed  Google Scholar 

  • Lefcort H, Vancura J, Lider EL (2010) 75 years after mining ends stream insect diversity is still affected by heavy metals. Ecotoxicology 19:1416–1425

    CAS  PubMed  Google Scholar 

  • Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2:18–22

    Google Scholar 

  • Liu CR, White M, Newell G (2013) Selecting thresholds for the prediction of species occurrence with presence-only data. J Biogeogr 40:778–789

    Google Scholar 

  • Lopes NP, Freitas RP, Rocha-Filho RC (2019) How many more Brumadinhos and Marianas will we be faced with yet? J Braz Chem Soc 30:681–682

    CAS  Google Scholar 

  • Marmion M, Parviainen M, Luoto M, Heikkinen RK, Thuiller W (2009) Evaluation of consensus methods in predictive species distribution modelling. Divers Distrib 15:59–69

    Google Scholar 

  • Ministério do Planejamento (2017) Programa de Aceleração do Crescimento (PAC). http://www.pac.gov.br/ Accessed 20 June 2017

  • Ministério do Transporte (2013). http://www.transportes.gov.br/ Accessed 21 Nov 2013

  • MMA (2014) Lista Oficial das Espécies da Fauna Brasileira Ameaçadas de Extinção. Diário Oficial da República Federativa do Brasil, Brasília

    Google Scholar 

  • Monteiro-Júnior CS, Couceiro SEM, Hamada N, Juen L (2013) Effect of vegetation removal for road building on richness and composition of Odonata communities in Amazonia, Brazil. Int J Odonatol 16:135–144. https://doi.org/10.1080/13887890.2013.764798

    Article  Google Scholar 

  • Nóbrega CC, De Marco P Jr (2011) Unprotecting the rare species: a niche-based gap analysis for odonates in a core Cerrado area. Divers Distrib 17:491–505

    Google Scholar 

  • Paulson DR (2006) The importance of forest to Neotropical dragonflies. In: Cordero-Rivera A (ed) Forests and dragonflies. Moscow, Russia, pp 79–101

    Google Scholar 

  • Pearson RG, Raxworthy CJ, Nakamura M, Peterson T (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117

    Google Scholar 

  • Pena JCC, Goulart F, Fernandes GW, Hoffmann D, Leite FSF, Santos NB, Soares-Filho B, Sobral-Souza T, Vancine MH, Rodrigues M (2017) Impacts of mining activities on the potential geographic distribution of eastern Brazil mountaintop endemic species. Perspect Ecol Conserv 15:172–178

    Google Scholar 

  • Peterson AT, Soberón J, Sánchez-Cordero V (1999) Conservatism of ecological niches in evolutionary time. Science 285:1265–1267

    CAS  PubMed  Google Scholar 

  • Peterson AT (2011) Ecological niche conservatism: a time structured review of evidence. J Biogeogr 38:817–827

    Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modelling of species geographic distributions. Ecol Model 190:231–259

    Google Scholar 

  • Phillips SJ, Dudik M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Raxworthy CJ, Martinez-Meyer E, Horning N, Nussbaum RA, Schneider GE, Ortega-Huerta MA, Peterson T (2003) Predicting distributions of known and unknown reptile species in Madagascar. Nature 426:837–841

    CAS  PubMed  Google Scholar 

  • Rigueira DMG, Rocha PLB, Mariano-Neto E (2013) Forest cover, extinction thresholds and time lags in woody plants (Myrtaceae) in the Brazilian Atlantic Forest: resources for conservation. Biodivers Conserv 22:3141–3163

    Google Scholar 

  • Rodrigues ME, Roque FO, Quintero JMO, Pena JCC, Sousa DC, De Marco P Jr (2016) Nonlinear responses in damselfly community along a gradient of habitat loss in a savanna landscape. Biol Conserv 194:113–120

    Google Scholar 

  • Samways MJ (2008) Dragonflies as focal organisms in contemporary conservation biology. In: Córdoba-Aguilar A (ed) Dragonflies: model organisms for ecological, evolutionary research. Oxford University Press, Oxford, pp 97–108

    Google Scholar 

  • Silva DP, Dias AC, Lecci LS, Simião-Ferreira J (2019) Potential effects of future climate changes on Brasilian cool-adapted stoneflies (Insecta: Plecoptera). Neotrop Entomol 48:57–70

    CAS  PubMed  Google Scholar 

  • Smith AB, Godsoe W, Rodríguez-Sánchez F, Wang H, Warren D (2019) Niche estimation above and below the species level. Ecol Evol 34:260–273

    Google Scholar 

  • Sonter LJ, Barrett DJ, Soares-Filho BS (2014) Offsetting the impacts of mining to achieve no net loss of native vegetation. Conserv Biol 28:1068–1976

    CAS  PubMed  Google Scholar 

  • Steytler NS, Samways MJ (1995) Biotope selection by adult male dragonflies (Odonata) at an artificial lake created for insect conservation. Biol Conserv 72:381–386

    Google Scholar 

  • Suh AN, Samways MJ (2005) Significance of temporal changes when designing a reservoir for conservation of dragonfly diversity. Biodivers Conserv 14:165–178

    Google Scholar 

  • Swets K (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    CAS  PubMed  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Townsend Peterson A, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148

    CAS  PubMed  Google Scholar 

  • Toms JD, Lesperance ML (2003) Piecewise regression: a tool for identifying ecological thresholds. Ecology 84:2034–2041

    Google Scholar 

  • Tôrres NM, De Marco P Jr, Santos T, Silveira L, Jácomo ATA, Diniz-Filho JAF (2012) Can species distribution modelling provide estimates of population densities? A case study with jaguars in the Neotropics. Divers Distrib 18:615–627

    Google Scholar 

  • Urbanek S (2015) rJava: low-level R to Java Interface. R package version 0.9–7

  • Villén-Pérez S, Mendes P, Nóbrega CC, Córtes LG, De Marco P Jr (2017) Mining code changes undermine biodivesity conservation in Brazil. Environ Conserv 45:96–99

    Google Scholar 

Download references

Acknowledgments

We thank two anonymous reviewers, and the editor of the journal for suggestions that improved a previous version of this manuscript.

Funding

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) provided research grants to MFAA, and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) provided productivity grants to LJ (process 303252/2013-8) and PDM (process 305542/2010-9). This study was also funded by “Mapas de Vulnerabilidade de Espécies Ameaçadas Brasileiras” in partnership with Universidade Federal de Goiás – Instituto Chico Mendes.

Author information

Authors and Affiliations

Authors

Contributions

MFAA and PDM planned and conducted data analyses. MFAA, PDM, LJ, and NMT wrote the manuscript.

Corresponding author

Correspondence to M F A Araújo.

Additional information

Edited by Edison Ryoiti Sujii – Embrapa/CENARGEN

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOC 108 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araújo, M.F.A., De Marco, P., Juen, L. et al. Vulnerability of Phyllocycla Species (Odonata: Gomphidae) to Current and Planned Anthropic Activities by the Brazilian Government. Neotrop Entomol 49, 24–32 (2020). https://doi.org/10.1007/s13744-019-00714-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-019-00714-4

Keywords

Navigation