Skip to main content
Log in

Retrotransposon-based sequence-specific amplified polymorphism markers for the analysis of genetic diversity and phylogeny in Malus Mill. (Rosaceae)

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Sequence-Specific Amplified Polymorphism (S-SAP)-analysis of 131 accessions of different species from five sections of the genus Malus was carried out to study genetic diversity, and to clarify phylogenetic and taxonomic issues. S-SAP-markers, based on long terminal repeat (LTR)-retrotransposons TRIM2 and dem1, were developed, which identified 679 polymorphic fragments in the studied Malus species. S-SAP technique proved to be effective for taxonomic studies in Malus. The obtained results generally support the existing sectional taxonomy in the genus Malus and allowed to determine the taxonomic status of some Russian landraces. The genetic diversity and taxonomic status of the Russian apple Antonovka landraces, widely used in breeding programs for their increased adaptation to abiotic stress and scab resistance, were clarified. All of them belong to M. domestica, section Malus. However, Antonovka Olginskaya might have a hybrid origin with some contribution from Gymnomeles species according to PCO analysis data. The taxonomic status was resolved for another Russian landrace, Yakutskaya, which exhibits increased winter hardiness and drought resistance; it belongs to section Gymnomeles, with a high resemblance to M. baccata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Antonius-Klemola K, Kalendar R, Schulman AH (2006) TRIM retrotransposons occur in apple and are polymorphic between varieties but not sports. Theor Appl Genet 112(6):999–1008. doi:10.1007/s00122-005-0203-0

    Article  CAS  PubMed  Google Scholar 

  • Barsukova ON (2012) Gene pool of wild Malus species. Maikop Experiment Station, N. I. Vavilov Research Institute of Plant Industry, Maikop

    Google Scholar 

  • Bassam BJ, Gresshoff PM (2007) Silver staining DNA in polyacrylamide gels. Nat Protoc 2:2649–2654. doi:10.1038/nprot.2007.330

    Article  CAS  PubMed  Google Scholar 

  • Browicz K (1970) Malus florentina—its history, systematic position and geographical distribution. Fragm Floristi Geobot Pol 16:61–83

    Google Scholar 

  • Calenge F, Faure A, Goerre M, Gebhardt C, van de Weg WE, Parisi L, Durel CE (2004) Quantitative trait loci (QTL) analysis reveals both broad-spectrum and isolate-specific QTL for scab resistance in an apple progeny challenged with eight isolates of Venturia inaequalis. Phytopathology 94(4):370–379. doi:10.1094/PHYTO.2004.94.4.370

    Article  CAS  Google Scholar 

  • Cheng MH, Yang XH, Zhang YG, Deng HP, Li XL (2001) Study on the taxonomy of Malus florentina (Zuccagni) C. K. Schneid. J Southwest Agric Univ (China) 23:481–483

    Google Scholar 

  • Coart E, Van Glabeke S, De Loose M, Larsen AS, Roldan-Ruiz I (2006) Chloroplast diversity in the genus Malus: new insights into the relationship between the European wild apple (Malus sylvestris (L.) Mill.) and the domesticated apple (Malus domestica Borkh.). Mol Ecol 15:2171–2182. doi:10.1111/j.1365-294X.2006.02924.x

    Article  CAS  PubMed  Google Scholar 

  • Cornille A, Giraud T, Bellard C, Tellier A, Le Cam B, Smulders MJM, Kleinschmit J, Roldan-Ruiz I, Gladieux P (2013) Postglacial recolonization history of the European crabapple (Malus sylvestris Mill.), a wild contributor to the domesticated apple. Mol Ecol 22(8):2249–2263. doi:10.1111/mec.12231

    Article  CAS  PubMed  Google Scholar 

  • Cornille A, Giraud T, Smulders MJM, Roldan-Ruiz I, Gladieux P (2014) The domestication and evolutionary ecology of apples. Trends Genet 30(2):57–65. doi:10.1016/j.tig.2013.10.002

    Article  CAS  PubMed  Google Scholar 

  • Dunemann F, Egerer J (2010) A major resistance gene from Russian apple ‘Antonovka’ conferring field immunity against apple scab is closely linked to the Vf locus. Tree Genet Genomes 6(5):627–633. doi:10.1007/s11295-010-0278-x

    Article  Google Scholar 

  • Dzhangaliev AD (2003) The wild apple tree of Kazakhstan. In: Janick Jules (ed) Horticultural reviews, vol 29. Wild apple and fruit trees of Central Asia. Wiley, New York, pp 63–303

    Google Scholar 

  • Ellis THN, Poyser MR, Knox MR, Versinin AV, Ambrose MJ (1998) Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea. Mol Gen Genet 260:9–19. doi:10.1007/PL00008630

    CAS  PubMed  Google Scholar 

  • FAOSTAT (2013) http://faostat.fao.org. Accessed 01Nov 2015

  • Forsline PL, Aldwinkle HS, Dickson EE, Luby JJ, Hokanson SC (2003) Collection, maintenance, characterization, and utilization of wild apples of Central Asia. In: Janick Jules (ed) Horticultural reviews, vol 29. Wild apple and fruit trees of Central Asia. Wiley, New York, pp 1–62

    Google Scholar 

  • Gross BL, Henk AD, Richards CM, Fazio G, Volk GM (2014) Genetic diversity in Malus × domestica (Rosaceae) through time in response to domestication. Am J Bot 101(10):1770–1779. doi:10.3732/ajb.1400297

    Article  PubMed  Google Scholar 

  • Hammer O, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaentol Electron 4(1):9 http://palaeo-electronica.org/2001_1/past/issue1_01.htm

  • Harris SA, Robinson JP, Juniper BE (2002) Genetic clues to the origin of the apple. Trends Genet 18(8):426–430. doi:10.1016/S0168-9525(02)02689-6

    Article  CAS  PubMed  Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23(2):254-267. www.splitstree.org

  • Jiao Y, Ma R, Shen Z, Yu M (2014) Development of Ty1-copia retrotransposon-based SSAP molecular markers for the study of genetic diversity in peach. Biochem Syst Ecol 57:270–277. doi:10.1016/j.bse.2014.08.010

    Article  CAS  Google Scholar 

  • Konovalov F, Goncharov N, Goryunova S, Shaturova A, Proshlyakova T, Kudryavtsev A (2010) Molecular markers based on LTR retrotransposons BARE-1 and Jeli uncover different strata of evolutionary relationships in diploid wheats. Mol Genet Genomics 283:551–563. doi:10.1007/s00438-010-0539-2

    Article  CAS  PubMed  Google Scholar 

  • Krussmann G (1984–1986) Manual of cultivated broadleaved trees and shrubs. Brittonia, London

  • Kumar A, Bennetzen JL (1999) Plant Retrotransposons. Annu Rev Genet 33:479–532. doi:10.1146/annurev.genet.33.1.479

    Article  CAS  PubMed  Google Scholar 

  • Langenfelds VT (1991) Apple Tree: morphological evolution, phylogeny, geography and systematics of the Genus. Zinatne, Riga

    Google Scholar 

  • Melnikova NV, Kudryavtseva AV, Speranskaya AS, Krinitsina AA, Dmitriev AA, Belenikin MS, Upelniek VP, Batrak ER, Kovaleva IS, Kudryavtsev AM (2012) The FaRE1 LTR-retrotransposon based SSAP markers reveal genetic polymorphism of strawberry (Fragaria x ananassa) cultivars. J Agric Sci 4(11):111–118. doi:10.5539/jas.v4n11p111

    Google Scholar 

  • Perazzolli M, Malacarne G, Baldo A, Righetti L, Bailey A, Fontana P, Velasco R, Malnoy M (2014) Characterization of Resistance Gene Analogues (RGAs) in apple (Malus domestica Borkh.) and their evolutionary history of the Rosaceae family. PLoS ONE 9(2):e83844. doi:10.1371/journal.pone.0083844

    Article  PubMed  PubMed Central  Google Scholar 

  • Phipps JB, Robertson KR, Smith PG, Rohrer JR (1990) A checklist of the subfamily Maloideae (Rosaceae). Can J Botany 68:2209–2255. doi:10.1139/b90-288

    Article  Google Scholar 

  • Ponomarenko V (1992) Critical review of the system of the genus Malus Mill. (Rosaceae) species. (in Russian with English summary) Bulletin of applied botany genetics and plant breeding. Russ Acad Agric Sci 146:1–10

    Google Scholar 

  • Porceddu A, Albertini E, Barcaccia G, Marconi G, Bertoli FB, Veronesi F (2002) Development of S-SAP markers based on an LTR-like sequence from Medicago sativa L. Mol Genet Genomics 267:107–114. doi:10.1007/s00438-002-0643-z

    Article  CAS  PubMed  Google Scholar 

  • Puchooa D (2004) A simple, rapid and efficient method for the extraction of genomic DNA from lychee (Litchi chinensis Sonn.). Afr J Biotechnol 3(4):253–255. doi:10.5897/AJB2004.000-2046

    Article  CAS  Google Scholar 

  • Robinson JP, Harris SA, Juniper BE (2001) Taxonomy of the genus Malus Mill. (Rosaceae) with emphasis on the cultivated apple Malus domestica Borkh. Plant Syst Evol 226:35–58. doi:10.1007/s006060170072

    Article  CAS  Google Scholar 

  • Savelyeva EN, Kudryavtsev AM (2015) AFLP analysis of genetic diversity in the genus Malus Mill. (apple. Russ J Genet 51(10):1126–1133. doi:10.7868/S001667581510015X

    Article  CAS  Google Scholar 

  • Schulman AH, Flavell AJ, Ellis THN (2004) The application of LTR retrotransposons as genetic markers in plants. Mobile genet elem protoc genomic Appl 260:145–173. doi:10.1385/1-59259-755-6:145

    Article  CAS  Google Scholar 

  • Syed NH, Sorensen AP, Antonise R, van de Wiel C, van der Linden CG, van’t Westende W, Hooftman DAP, den Nijs HCM, Flavell AJ (2005) A detailed linkage map of lettuce based on SSAP, AFLP and NBS markers. Theor Appl Genet 112(3):517–527. doi:10.1007/s00122-005-0155-4

    Article  PubMed  Google Scholar 

  • Tam SM, Mhiri C, Vogelaar A, Kerkveld M, Pearce SR, Grandbastien M-A (2005) Comparative analyses of genetic diversities within tomato and pepper collection detected by retrotransposon-based SSAP, AFLP and SSR. Theor Appl Genet 110:819–831. doi:10.1007/s00122-004-1837-z

    Article  CAS  PubMed  Google Scholar 

  • Tarasenko GG (1941) Apple (in Russian with English summary). Selkhozgiz, Moscow

    Google Scholar 

  • Van der Linden CG, Wouters DCAE, Mihalka V, Kochieva EZ, Smulders MJM, Vosman B (2004) Efficient targeting of plant disease resistance loci using NBS profiling. Theor Appl Genet 109(2):384–393. doi:10.1007/s00122-004-1642-8

    Article  PubMed  Google Scholar 

  • Vavilov NI (1930) Wild progenitors of the fruit trees of Turkistan and the Caucasus and the problem of the origin of fruit trees. Report and Proc 9th Int Hort Congr. 271–286

  • Velasco R, Zharkikh A, Affourtit J et al. (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42(10):833–839. doi:10.1038/ng.654

    Article  CAS  PubMed  Google Scholar 

  • Venturi S, Dondini L, Donini P, Sansavini S (2006) Retrotransposon characterization and fingerprinting of apple clones by S-SAP markers. Theor Appl Genet 112(3):440–444. doi:10.1007/s00122-005-0143-8

    Article  CAS  PubMed  Google Scholar 

  • Volk GM, Henk AD, Baldo A et al (2015) Chloroplast heterogeneity and historical admixture within the genus Malus. Am J Bot 102(7):1–11. doi:10.3732/ajb.1500095

    Article  Google Scholar 

  • Wagner I, Weeden NF (2000) Isozymes in Malus sylvestris, Malus × domestica and in related Malus species. Acta Hort 538:51–56. doi:10.17660/ActaHortic.2000.538.3

    Article  CAS  Google Scholar 

  • Waugh R, McLean K, Flavell AJ, Pearce SR, Kumar A, Thomas BBT, Powell W (1997) Genetic distribution of BARE-1-like retro-transposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet 253:687–694. doi:10.1007/s004380050372

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Rafi S, Ramakrishna W (2011) Polymorphisms and evolutionary history of retrotransposon insertions in rice promoters. Genome 54:629–638. doi:10.1139/g11-030

    Article  CAS  PubMed  Google Scholar 

  • Yao J, Dong Y, Morris BA (2001) Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor. PNAS USA 98:1306–1311. doi:10.1073/pnas.98.3.1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Science Foundation project No 14-16-00121. The authors would like to thank the Vavilov Research Institute of Plant Industry (VIR) (St. Petersburg, Russia), the Michurin All-Russian Research Institute of Genetics and Breeding of Fruit Crops (Michurinsk, Russia), and the State Botanical Garden of the Russian Academy of Sciences (Moscow, Russia) for the plant material (apple leaves and buds) provided for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina Savelyeva.

Ethics declarations

Conflict of interest

There are no potential conflicts of interest being expected during the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savelyeva, E., Kalegina, A., Boris, K. et al. Retrotransposon-based sequence-specific amplified polymorphism markers for the analysis of genetic diversity and phylogeny in Malus Mill. (Rosaceae). Genet Resour Crop Evol 64, 1499–1511 (2017). https://doi.org/10.1007/s10722-016-0449-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-016-0449-1

Keywords

Navigation